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The signature of a path

Euclidan coordinates for Rd : (e1, . . . , ed ).

A path γ = (γ1, . . . , γd ) : [0, 1]→ Rd continuously differentiable.

For word w = ei1 · · · ein , define

Cγ(w) =
∫

0<u1<···<un<1
dγ i1

u1 · · · dγ
in
un .

The signature of γ is the collection of all C(w)’s, denoted by Sig(γ):

Sig(γ) :=
∑
n≥0

∑
w :|w |=n

Cγ(w) · w

︸ ︷︷ ︸
Sig(n)(γ)

.

Independent of parametrisation. It captures the ordered evolution along
the path through the order of the letters.
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Examples

Consider R2 with standard basis (e1, e2) = (x , y).

1 Path movement: (0, 0)→ (a, 0)→ (a, b).

ax ∗ by 7→ exp(ax) exp(by) .

2 Path movement: (0, 0)→ (0, b)→ (a, b).

by ∗ ax 7→ exp(by) exp(ax) .

3 Straightline segment from (0, 0) to (a, b).

ax + by 7→ exp(ax + by) .

They have the same Sig(1), but different Sig(2).
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Another example

For every n, we give two paths α and β such that Sig(k)(α) = Sig(k)(β)
for every k ≤ n.

Consider dimension two. Let α0 = x , β0 = y . Define

αk+1 = αk ∗ βk , βk+1 = βk ∗ αk .

Then αn and βn have the same signature up to level n.

e.g.: α3 = xyyxyxxy and β3 = yxxyxyyx are two lattice paths with 8 steps,
and have the same signatures up to level three.

Sig(n) describes finer (local) information of the path when n becomes
bigger.
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Uniqueness

Chen (1950’s): continuously differentiable curves are determined by their
signatures.

Hambly-Lyons: paths of finite lengths are uniquely determined by their
signatures up to tree-like equivalence.

If α, β are two paths of finite lengths, then Sig(α) = Sig(β) if and only if
α ∗ β−1 is equivalent to a null path.

Finite length paths can have very subtle tree-cancellations, while there is
no such nontrivial equivalence if the curve is continuously differentiable
(when parametrised at unit speed).

Boedihardjo-Geng-Lyons-Yang: uniqueness for rough paths.

Question: how to reconstruct the reduced path from its signature?
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Uniqueness and reconstruction

Uniqueness with semi-constructive proofs:

Le Jan-Qian: Brownian motion sample paths.

Boedihardjo-Geng: more general Gaussian processes.

Geng: deterministic rough paths.

Weijun Xu (Joint works with Terry Lyons also with Jiawei Chang, Nick Duffield and Hao Ni)Inverting the signature of a path April 30, 2020 6 / 17



Inversion for axis paths

These are paths that move parallel to Euclidean axes. They have the form

γ = r1ei1 ∗ r2ei2 ∗ · · · ∗ rNeiN .

Information to recover: ordered directions (ei1 , . . . , eiN ) and length of each
step (r1, . . . , rN).

Observation:
w = ei1ei2 · · · eiN is square-free (no two adjacent letters are the same),
and C(w) = r1r2 · · · riN 6= 0.
If w ′ is any other square-free word with length |w ′| ≥ N, then
C(w ′) = 0.

Conclusion: there exists a unique longest square free word w such that
C(w) 6= 0, then this word tells the ordered directions of the path
movement.
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Inversion for axis paths

These are paths that move parallel to Euclidean axes. They have the form

γ = r1ei1 ∗ r2ei2 ∗ · · · ∗ rNeiN .

To recover the lengths, let w = ei1 · · · eiN be the unique longest square-free
word as above, and define

wk := ei1 · · · e2
ik · · · eiN .

Then
C(wk) = 1

2 r1 · · · r 2
k · · · rN ⇒ rk = 2C(wk)

C(w) .
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Inversion for axis paths

These are paths that move parallel to Euclidean axes. They have the form

γ = r1ei1 ∗ r2ei2 ∗ · · · ∗ rNeiN .

1 Find the unique longest square-free word with non-zero coefficient.
This word tells the ordered directions of the path movement.

2 Move one level up and compare the coefficients to recover the length
of each step.

Rely on special structures of the lattice.

Pfeffer-Seigal-Sturmfels: reconstruct paths that arise from a fixed
dictionary.

Weijun Xu (Joint works with Terry Lyons also with Jiawei Chang, Nick Duffield and Hao Ni)Inverting the signature of a path April 30, 2020 9 / 17



Main reconstruction theorem

Theorem (Lyons, X.)
For every k, by using Sig(γ) up to level N = O(k3 log k), we explicitly
construct a piecewise linear path γ̃ with k pieces such that

sup
u∈[0,1]

∣∣γ̃′u − γ′u∣∣ < εk

when both are parametrized at unit speed (with respect to `1 norm), and
εk → 0 as k → +∞, the speed depending on modulus of continuity of γ′.

The error εk = O(k−α
2

2 ) if γ ∈ C1,α.

Commutative in smaller scales; noncommutative in larger scales.

Key: how to rule out noncommutativity in small scales?
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Main reconstruction theorem
We work with R2 for notational simplicity. The piecewise linear path γ̃ has
the form

γ̃ = γ̃1 ∗ · · · ∗ γ̃k ,

where

γ̃j = L̃
k

(
a(j)

x ρjx + a(j)
y (1− ρj)y

)
.

Hope: each γ̃j approximates γ[ j−1
k , j

k ] in the `1 sense.

ρj , 1− ρj ∈ [0, 1] represents the unsigned direction;

a(j)
x , a(j)

y ∈ {±1} represents the sign;

L̃ > 0 approximates the `1 length.
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Recovering the increment
Symmetrisation averages out the order.
Summing over all words of length n with k x ’s and n − k y ’s:

S(k, n − k) = n!
∑

w∈Wk,n−k

C(w) =
(

n
k

)
(∆x)k(∆y)n−k .

Maximum: k∗

n−k∗ ≈ |∆x |
|∆y | ⇒ recovers unsigned direction.

More robust way of doing it: find k∗ such that∑
k: | kn−

k∗
n |<ε

|S(k, n − k)| ≈
∑

k
|S(k, n − k)|

There are more than one such k∗, but all of them are close to each other.
Move one level up: comparing S(k∗ + 1, n − k∗) and S(k∗, n − k∗) gives
the sign of the x direction.
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Symmetrisation

Symmetrising k blocks with block size 2n:

∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
2n

ei1 ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
2n

ei2 · · · · · · eik−1 ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
2n

.

Key: pattern in block j are roughly determined by γ[ j−1
k , j

k ].

Steps:
1 Recovering the unsigned directions by checking non-degeneracy.
2 Recovering the signs by moving one level up.
3 Recovering the length by a scaling argument.

Remark: only uses level 2nk + k − 1 and 2nk + k.

Weijun Xu (Joint works with Terry Lyons also with Jiawei Chang, Nick Duffield and Hao Ni)Inverting the signature of a path April 30, 2020 13 / 17



Probabilisitc interpretation
Terry told me the following probabilistic interpretation of the signature
during my PhD.

Suppose γ : [0, 1]→ R2 is monotone in the sense that x ′t ≥ 0 and y ′t ≥ 0
for all t ∈ [0, 1].

Think of the following Poisson process (Xt ,Yt)t∈[0,1]:
Xt generates letter x with intensity x ′t ; Yt generates letter y with
intensity y ′t ; simultaneously and independently.
We arrange the letters in the order of their arrival time (up to time
1), getting a (random) word W.
For example, if there are 5 arrivals in total in [0, 1], say x , y , y , x , y at
times 0 ≤ u1 < u2 < u3 < u4 < u5 ≤ 1, then W = xyyxy .

Probabilistic interpretation of signature:

Cγ(w) = eL Pr(W = w) , L = `1 length of γ .
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Probabilistic interpretation
For monotone paths:

Cγ(w) = eL Pr(W = w)

Chang-Duffield-Ni-X.: inversion for monotone paths.

General non-monotone paths? x ′t and y ′t can change signs.

Poisson process (Xt ,Yt) with intensities |x ′t | and |y ′t |.
Each letter of arrival also carries a sign: if x arrives at time u, then
+1 if x ′u > 0, and −1 if x ′u < 0. Same for y .
Same random word W as before, but W also have a sign — the
product of the signs of its letters.

Now, we have

Cγ(w) = eLE
[
sign(W) · 1W=w

]
, L = `1 length of γ .
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Summary
Consequences of the reconstruction:

1 Tail signatures already determine C1 paths.
2 ’Verification’ that higher level signatures describe finer structures of

the path.
Quantitative description? Relevant lower bounds (for large n):
Hambly-Lyons, Boedihardjo-Geng
A reverse question: does a version of Bernstein’s theorem hold?

What have we learned?
1 Symmetrisation counts the frequency but neglects the order; so it

gives local increments.
2 A certain non-degeneracy criterion is often needed in recovering the

directions (Le Jan-Qian, Boedihardjo-Geng, Geng).
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Some questions

1 Improve efficiency?

Insertion algorithm by Chang-Lyons;

Algebraic structures explored in Améndola-Friz-Sturmfels,
Pfeffer-Seigal-Sturmfels.

2 Inversion for rough paths? (Geng)

3 Identify the image of the signatures in the tensor algebra.

Expect to involve highly nontrival interplays between algebraic
structure (group-like) and analytic properties (decay)  no clue at
this moment.

More reasonable to start with monotone paths first.
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