Inverting the signature of a path

Weijun Xu

Joint works with Terry Lyons

also with Jiawei Chang, Nick Duffield and Hao Ni

April 30, 2020

The signature of a path

Euclidan coordinates for \mathbf{R}^d : (e_1, \ldots, e_d) .

A path $\gamma = (\gamma^1, \dots, \gamma^d) : [0, 1] \rightarrow \mathbf{R}^d$ continuously differentiable.

For word $w = e_{i_1} \cdots e_{i_n}$, define

$$C_{\gamma}(w) = \int_{0 < u_1 < \cdots < u_n < 1} d\gamma_{u_1}^{i_1} \cdots d\gamma_{u_n}^{i_n}.$$

The signature of γ is the collection of all C(w)'s, denoted by Sig (γ) :

$$\operatorname{Sig}(\gamma) := \sum_{n \geq 0} \underbrace{\sum_{w: |w| = n} C_{\gamma}(w) \cdot w}_{\operatorname{Sig}^{(n)}(\gamma)}.$$

Independent of parametrisation. It captures the ordered evolution along the path through the order of the letters.

Examples

Consider \mathbf{R}^2 with standard basis $(e_1, e_2) = (x, y)$.

• Path movement: $(0,0) \rightarrow (a,0) \rightarrow (a,b)$.

 $ax * by \mapsto \exp(ax) \exp(by)$.

2 Path movement: $(0,0) \rightarrow (0,b) \rightarrow (a,b)$.

 $by * ax \mapsto \exp(by) \exp(ax)$.

Straightline segment from (0,0) to (a,b).

$$ax + by \mapsto \exp(ax + by)$$
.

They have the same $Sig^{(1)}$, but different $Sig^{(2)}$.

Another example

For every *n*, we give two paths α and β such that $Sig^{(k)}(\alpha) = Sig^{(k)}(\beta)$ for every $k \leq n$.

Consider dimension two. Let $\alpha_0 = x$, $\beta_0 = y$. Define

$$\alpha_{k+1} = \alpha_k * \beta_k , \qquad \beta_{k+1} = \beta_k * \alpha_k .$$

Then α_n and β_n have the same signature up to level n.

e.g.: $\alpha_3 = xyyxyxxy$ and $\beta_3 = yxxyxyyx$ are two lattice paths with 8 steps, and have the same signatures up to level three.

 $Sig^{(n)}$ describes finer (local) information of the path when *n* becomes bigger.

Uniqueness

Chen (1950's): continuously differentiable curves are determined by their signatures.

Hambly-Lyons: paths of finite lengths are uniquely determined by their signatures up to tree-like equivalence.

If α, β are two paths of finite lengths, then $Sig(\alpha) = Sig(\beta)$ if and only if $\alpha * \beta^{-1}$ is equivalent to a null path.

Finite length paths can have very subtle tree-cancellations, while there is no such nontrivial equivalence if the curve is continuously differentiable (when parametrised at unit speed).

Boedihardjo-Geng-Lyons-Yang: uniqueness for rough paths.

Question: how to reconstruct the reduced path from its signature?

Uniqueness with semi-constructive proofs:

- Le Jan-Qian: Brownian motion sample paths.
- Boedihardjo-Geng: more general Gaussian processes.
- Geng: deterministic rough paths.

Inversion for axis paths

These are paths that move parallel to Euclidean axes. They have the form

$$\gamma = r_1 e_{i_1} * r_2 e_{i_2} * \cdots * r_N e_{i_N} .$$

Information to recover: ordered directions $(e_{i_1}, \ldots, e_{i_N})$ and length of each step (r_1, \ldots, r_N) .

Observation:

• $w = e_{i_1}e_{i_2}\cdots e_{i_N}$ is square-free (no two adjacent letters are the same), and $C(w) = r_1r_2\cdots r_{i_N} \neq 0$.

• If w' is any other square-free word with length $|w'| \ge N$, then C(w') = 0.

Conclusion: there exists a unique longest square free word w such that $C(w) \neq 0$, then this word tells the ordered directions of the path movement.

These are paths that move parallel to Euclidean axes. They have the form

$$\gamma = r_1 e_{i_1} * r_2 e_{i_2} * \cdots * r_N e_{i_N}$$

To recover the lengths, let $w = e_{i_1} \cdots e_{i_N}$ be the unique longest square-free word as above, and define

$$w_k := e_{i_1} \cdots e_{i_k}^2 \cdots e_{i_N}$$
.

Then

$$C(w_k) = \frac{1}{2}r_1 \cdots r_k^2 \cdots r_N \quad \Rightarrow \quad r_k = \frac{2C(w_k)}{C(w)}.$$

These are paths that move parallel to Euclidean axes. They have the form

$$\gamma = r_1 e_{i_1} * r_2 e_{i_2} * \cdots * r_N e_{i_N} .$$

- Find the unique longest square-free word with non-zero coefficient. This word tells the ordered directions of the path movement.
- One level up and compare the coefficients to recover the length of each step.

Rely on special structures of the lattice.

Pfeffer-Seigal-Sturmfels: reconstruct paths that arise from a *fixed dictionary*.

Main reconstruction theorem

Theorem (Lyons, X.)

For every k, by using $Sig(\gamma)$ up to level $N = O(k^3 \log k)$, we explicitly construct a piecewise linear path $\tilde{\gamma}$ with k pieces such that

$$\sup_{u \in [0,1]} \left| \widetilde{\gamma}'_u - \gamma'_u \right| < \varepsilon_k$$

when both are parametrized at unit speed (with respect to ℓ^1 norm), and $\varepsilon_k \to 0$ as $k \to +\infty$, the speed depending on modulus of continuity of γ' .

The error
$$\varepsilon_k = \mathcal{O}(k^{-\frac{\alpha^2}{2}})$$
 if $\gamma \in \mathcal{C}^{1,\alpha}$.

Commutative in smaller scales; noncommutative in larger scales. Key: how to rule out noncommutativity in small scales?

Inverting the signature of a path

Main reconstruction theorem

We work with ${\bf R}^2$ for notational simplicity. The piecewise linear path $\widetilde{\gamma}$ has the form

$$\widetilde{\gamma} = \widetilde{\gamma}_1 * \cdots * \widetilde{\gamma}_k,$$

where

$$\widetilde{\gamma}_j = rac{\widetilde{L}}{k} \Big(a_x^{(j)}
ho_j x + a_y^{(j)} (1 -
ho_j) y \Big).$$

Hope: each $\widetilde{\gamma}_j$ approximates $\gamma_{[\frac{j-1}{k},\frac{j}{k}]}$ in the ℓ^1 sense.

• $ho_j, 1ho_j \in [0,1]$ represents the unsigned direction;

•
$$a_x^{(j)}, a_y^{(j)} \in \{\pm 1\}$$
 represents the sign;

• $\tilde{L} > 0$ approximates the ℓ^1 length.

Recovering the increment

Symmetrisation averages out the order.

Summing over all words of length *n* with $k \times s$ and $n - k \times s$:

$$\mathcal{S}(k,n-k) = n! \sum_{w \in \mathcal{W}_{k,n-k}} C(w) = \binom{n}{k} (\Delta x)^k (\Delta y)^{n-k}.$$

Maximum: $\frac{k^*}{n-k^*} \approx \frac{|\Delta x|}{|\Delta y|} \Rightarrow$ recovers unsigned direction. More robust way of doing it: find k^* such that

$$\sum_{k: |\frac{k}{n} - \frac{k^*}{n}| < \varepsilon} |\mathcal{S}(k, n-k)| \approx \sum_{k} |\mathcal{S}(k, n-k)|$$

There are more than one such k^* , but all of them are close to each other. Move one level up: comparing $S(k^* + 1, n - k^*)$ and $S(k^*, n - k^*)$ gives the sign of the x direction.

Weijun Xu (Joint works with Terry Lyons al

Symmetrisation

Symmetrising k blocks with block size 2n:

$$\underbrace{\underbrace{****}_{2n}}_{2n} e_{i_1} \underbrace{\underbrace{****}_{2n}}_{2n} e_{i_2} \cdots \cdots e_{i_{k-1}} \underbrace{\underbrace{****}_{2n}}_{2n}.$$

Key: pattern in block j are roughly determined by $\gamma_{[\frac{j-1}{k},\frac{j}{k}]}.$ Steps:

- **1** Recovering the unsigned directions by checking non-degeneracy.
- Recovering the signs by moving one level up.
- Solution Recovering the length by a scaling argument.

Remark: only uses level 2nk + k - 1 and 2nk + k.

Probabilisitc interpretation

Terry told me the following probabilistic interpretation of the signature during my PhD.

Suppose $\gamma : [0,1] \to \mathbf{R}^2$ is monotone in the sense that $x'_t \ge 0$ and $y'_t \ge 0$ for all $t \in [0,1]$.

Think of the following Poisson process $(\mathcal{X}_t, \mathcal{Y}_t)_{t \in [0,1]}$:

- \mathcal{X}_t generates letter x with intensity x'_t ; \mathcal{Y}_t generates letter y with intensity y'_t ; simultaneously and independently.
- We arrange the letters in the order of their arrival time (up to time 1), getting a (random) word W.
- For example, if there are 5 arrivals in total in [0,1], say x, y, y, x, y at times $0 \le u_1 < u_2 < u_3 < u_4 < u_5 \le 1$, then $\mathcal{W} = xyyxy$.

Probabilistic interpretation of signature:

$$\mathcal{C}_\gamma(w) = e^L \operatorname{\mathsf{Pr}}(\mathcal{W} = w) \ , \qquad L = \ell^1 ext{ length of } \gamma \ .$$

Probabilistic interpretation

For monotone paths:

$$C_{\gamma}(w) = e^L \operatorname{Pr}(\mathcal{W} = w)$$

Chang-Duffield-Ni-X.: inversion for monotone paths.

General non-monotone paths? x'_t and y'_t can change signs.

- Poisson process $(\mathcal{X}_t, \mathcal{Y}_t)$ with intensities $|x'_t|$ and $|y'_t|$.
- Each letter of arrival also carries a sign: if x arrives at time u, then +1 if $x'_u > 0$, and -1 if $x'_u < 0$. Same for y.
- Same random word \mathcal{W} as before, but \mathcal{W} also have a sign the product of the signs of its letters.

Now, we have

$$\mathcal{C}_{\gamma}(w) = e^L \mathsf{E} ig[\operatorname{sign}(\mathcal{W}) \cdot \mathbf{1}_{\mathcal{W}=w} ig] \;, \quad L = \ell^1 ext{ length of } \gamma \;.$$

Summary

Consequences of the reconstruction:

- **①** Tail signatures already determine C^1 paths.
- Verification' that higher level signatures describe finer structures of the path.

Quantitative description? Relevant lower bounds (for large *n*): Hambly-Lyons, Boedihardjo-Geng

A reverse question: does a version of Bernstein's theorem hold?

What have we learned?

- Symmetrisation counts the frequency but neglects the order; so it gives local increments.
- A certain non-degeneracy criterion is often needed in recovering the directions (Le Jan-Qian, Boedihardjo-Geng, Geng).

Some questions

Improve efficiency?

Insertion algorithm by Chang-Lyons;

Algebraic structures explored in Améndola-Friz-Sturmfels, Pfeffer-Seigal-Sturmfels.

Inversion for rough paths? (Geng)

Identify the image of the signatures in the tensor algebra.
 Expect to involve highly nontrival interplays between algebraic structure (group-like) and analytic properties (decay) → no clue at this moment.

More reasonable to start with monotone paths first.