Learning with signatures: embedding and truncation order selection

DataSig Seminar Series

Adeline Fermanian

April 30th 2020

SORBONNE UNIVERSITÉ

Joint work with

Benoît Cadre
University Rennes 2

Gérard Biau
Sorbonne University

Learning from a data stream

First Trust NASDAQ Clean Edge US Liquid Series (QCLN) $21.20+0.05$

Time series prediction

Learning from a data stream

Stereo sound recognition

Learning from a data stream

Automated medical diagnosis from sensor data

Learning from a data stream

Recognition of characters or handwriting

Common feature

The predictor is a path $X:[a, b] \rightarrow \mathbb{R}^{d}$.

Google "Quick, Draw!" dataset

50 million drawings, 340 classes

Data representation

A sample from the class flower

Data representation

A sample from the class flower

Data representation

A sample from the class flower

Data representation

A sample from the class flower

x and y coordinates

Data representation

A sample from the class flower

Time reversed

Data representation

A sample from the class flower

x and y at a different speed

The signature will overcome some of these problems.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.
\triangleright No loss of information.

Table of contents

1. Definition and basic properties
2. Learning with signatures
3. Truncation order
4. Path embeddings
5. Performance of signatures

Definition and basic properties

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1-\mathrm{var}}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Example :

- X_{t} continuously differentiable:

$$
\int_{0}^{1} Y_{t} d X_{t}=\int_{0}^{1} Y_{t} \dot{X}_{t} d t
$$

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1-\mathrm{var}}<\infty$.
- $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.
- Riemann-Stieljes integral of Y against X is well-defined. Notation:

$$
\int_{0}^{1} Y_{t} d X_{t}
$$

Example :

- $Y_{t}=1$ for all $t \in[0,1]:$

$$
\int_{0}^{1} Y_{t} d X_{t}=\int_{0}^{1} d X_{t}=X_{1}-X_{0}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

- $S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0,1]}$ is the k-fold iterated integral of X along i_{1}, \ldots, i_{k}.

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{k}}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
\mathbf{X}^{\mathbf{k}}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{k}}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

where

$$
T\left(\mathbb{R}^{d}\right)=1 \oplus \mathbb{R}^{d} \oplus\left(\mathbb{R}^{d}\right)^{\otimes 2} \oplus \cdots \oplus\left(\mathbb{R}^{d}\right)^{\otimes k} \oplus \cdots
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\mathbf{X}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right)
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
\mathbf{X}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
\mathbf{X}^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
\mathbf{X}^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
\mathbf{X}^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Truncated signature

- Truncated signature at order m :

$$
S^{m}(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right) .
$$

Truncated signature

- Truncated signature at order m :

$$
S^{m}(X)=\left(1, \mathbf{X}^{1}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{\mathbf{m}}\right)
$$

- Dimension:

$$
s_{d}(m)=\sum_{k=0}^{m} d^{k}=\frac{d^{m+1}-1}{d-1}
$$

Geometric interpretation

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+X_{1}$.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+X_{1}$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k} X_{1}^{i_{j}} .
$$

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+X_{1}$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k} X_{1}^{i_{j}} .
$$

\triangleright Very useful: in practice, we always deal with piecewise linear paths.
\triangleright Needed: concatenation operations.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

\triangleright We can compute the signature of piecewise linear paths!
\triangleright Data stream of p points and truncation at $m: O\left(p d^{m}\right)$ operations.
\triangleright Fast packages and libraries available in C++ and Python.

Properties 2

Uniqueness
If X has at least one monotone coordinate, then $S(X)$ determines X uniquely.

Properties 2

Uniqueness

If X has at least one monotone coordinate, then $S(X)$ determines X uniquely.
\triangleright The signature characterizes paths.
\triangleright Trick: add a dummy monotonous component to X.
\triangleright Important concept of embedding.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

\triangleright Signature and linear model are happy together!
\triangleright This raises many interesting statistical issues.

Learning with signatures

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R}$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.
- Prediction function: $f_{\theta}(X) \approx Y, \theta \in \mathbb{R}^{p}$.

Supervised learning

- Goal: understand the relationship between $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
- Regression: $\mathscr{Y}=\mathbb{R} \quad$ Classification: $\mathscr{Y}=\{1, \ldots, q\}$.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \mathscr{X} \times \mathscr{Y}$, i.i.d. $\sim(X, Y)$.
- Prediction function: $f_{\theta}(X) \approx Y, \theta \in \mathbb{R}^{p}$.

$y_{1}=1$

$y_{2}=1$

$y_{3}=2$

$y_{4}=3$

$y_{5}=2$

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{\mathbb { R } ^ { p }}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{\mathbb { R } ^ { p }}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

- Least squares regression: $\mathscr{Y}=\mathbb{R}$ and $\ell\left(y, f_{\theta}(x)\right)=\left(y-f_{\theta}(x)\right)^{2}$.

Supervised learning

- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \rightarrow \mathbb{R}^{+}$.
- Empirical risk minimization: choose

$$
\hat{\theta} \in \underset{\theta \in \mathbb{\mathbb { R } ^ { p }}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right) .
$$

- Least squares regression: $\mathscr{Y}=\mathbb{R}$ and $\ell\left(y, f_{\theta}(x)\right)=\left(y-f_{\theta}(x)\right)^{2}$.
- Binary classification: $\mathscr{Y}=\{0,1\}$ and $\ell\left(y, f_{\theta}(x)\right)=\mathbb{1}_{\left[f_{\theta}(x) \neq y\right]}$.

Signature + machine learning

Questions

- How should we choose the order of truncation?

Questions

- How should we choose the order of truncation?
- Which embedding should we use?

Truncation order

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.
- Assumption: there exists $m^{*} \in \mathbb{N}, \beta^{*} \in \mathbb{R}^{s_{d}\left(m^{*}\right)}$ such that

$$
\mathbb{E}[Y \mid X]=\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle, \quad \text { and } \quad \operatorname{Var}(Y \mid X) \leq \sigma^{2}<\infty .
$$

Regression model on the signature

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ random path, $Y \in \mathbb{R}$ random variable.
- Assumption: there exists $m^{*} \in \mathbb{N}, \beta^{*} \in \mathbb{R}^{s_{d}\left(m^{*}\right)}$ such that

$$
\mathbb{E}[Y \mid X]=\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle, \quad \text { and } \quad \operatorname{Var}(Y \mid X) \leq \sigma^{2}<\infty .
$$

- Goal: estimate m^{*} and β^{*}.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- For any $m \in \mathbb{N}, \beta \in B_{m, \alpha}$,

$$
\mathcal{R}_{m, n}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left\langle\beta, S^{m}\left(X_{i}\right)\right\rangle\right)^{2} .
$$

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- For any $m \in \mathbb{N}, \alpha>0$,

$$
B_{m, \alpha}=\left\{\beta \in \mathbb{R}^{s_{d}(m)}:\|\beta\|_{2} \leq \alpha\right\} .
$$

- For any $m \in \mathbb{N}, \beta \in B_{m, \alpha}$,

$$
\mathcal{R}_{m, n}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left\langle\beta, S^{m}\left(X_{i}\right)\right\rangle\right)^{2} .
$$

- For any $m \in \mathbb{N}$,

$$
\widehat{L}_{n}(m)=\inf _{\beta \in B_{m, \alpha}} \mathcal{R}_{m, n}(\beta) .
$$

Estimation of m^{*}

Estimator:

$$
\widehat{m}=\min \left(\underset{m}{\operatorname{argmin}}\left(\widehat{L}_{n}(m)+\operatorname{pen}_{n}(m)\right)\right) .
$$

Result

Additional assumptions:

$\left(H_{\alpha}\right) \beta^{*} \in B_{m^{*}, \alpha}$.
$\left(H_{K}\right)$ There exists $K_{Y}>0$ and $K_{X}>0$ such that almost surely

$$
|Y| \leq K_{Y} \quad \text { and } \quad\|X\|_{1-\mathrm{var}} \leq K_{X} .
$$

Result

Theorem

Let $K_{\text {pen }}>0,0<\rho<\frac{1}{2}$, and

$$
\operatorname{pen}_{n}(m)=K_{\text {pen }} n^{-\rho} \sqrt{s_{d}(m)}
$$

Under the assumptions $\left(H_{\alpha}\right)$ and $\left(H_{K}\right)$, for any $n \geq n_{0}$,

$$
\mathbb{P}\left(\widehat{m} \neq m^{*}\right) \leq C_{1} \exp \left(-C_{2} n^{1-2 \rho}\right),
$$

where n_{0}, C_{1} and C_{2} are explicit constants.

Result

Theorem

Let $K_{\text {pen }}>0,0<\rho<\frac{1}{2}$, and

$$
\operatorname{pen}_{n}(m)=K_{\text {pen }} n^{-\rho} \sqrt{s_{d}(m)}
$$

Under the assumptions $\left(H_{\alpha}\right)$ and $\left(H_{K}\right)$, for any $n \geq n_{0}$,

$$
\mathbb{P}\left(\widehat{m} \neq m^{*}\right) \leq C_{1} \exp \left(-C_{2} n^{1-2 \rho}\right)
$$

where n_{0}, C_{1} and C_{2} are explicit constants.
Corollary \widehat{m} converges almost surely towards m^{*}.

Result

We can then estimate β^{*} by

$$
\widehat{\beta}=\underset{\beta \in B_{\overparen{m}, \alpha}}{\operatorname{argmin}} \mathcal{R}_{\widehat{m}, n}(\beta),
$$

Result

We can then estimate β^{*} by

$$
\widehat{\beta}=\underset{\beta \in B_{\overparen{m}, \alpha}}{\operatorname{argmin}} \mathcal{R}_{\widehat{m}, n}(\beta),
$$

and show that

$$
\mathbb{E}\left(\left\langle\widehat{\beta}, S^{\widehat{m}}(X)\right\rangle-\left\langle\beta^{*}, S^{m^{*}}(X)\right\rangle\right)^{2}=O\left(\frac{1}{\sqrt{n}}\right) .
$$

Path embeddings

Embedding

A way of mapping discrete sequential data into a continuous path.

Kaggle prediction competition

Overview

Description
Evaluation
Prizes
Timeline
"Quick, Draw!" was released as an experimental game to educate the public in a playful way about how AI works. The game prompts users to draw an image depicting a certain category, such as "banana," "table," etc. The game generated more than 1 B drawings, of which a subset was publicly released as the basis for this competition's training set. That subset contains 50M drawings encompassing 340 label categories.

Sounds fun, right? Here's the challenge: since the training data comes from the game itself, drawings can be incomplete or may not match the label. You'll need to build a recognizer that can effectively learn from this noisy data and perform well on a manually-labeled test set from a different distribution.

Different embeddings

Original data

Linear path

Different embeddings

Original data

Rectilinear path

Different embeddings

Original data

Time path

Different embeddings

Original data

Stroke path, version 1

Different embeddings

Original data

Stroke path, version 2

Different embeddings

Original data

Stroke path, version 3

Different embeddings

$$
\begin{gathered}
t \rightarrow\left(X_{t}^{1}, X_{t}^{2}, t, X_{t}^{3}, X_{t}^{4}\right), \text { where } \\
X_{t}^{3}= \begin{cases}0 & \text { if } t<t_{1} \\
X_{t-t_{1}}^{1} & \text { otherwise }\end{cases} \\
X_{t}^{4}= \begin{cases}0 & \text { if } t<t_{1} \\
X_{t-t_{1}}^{2} & \text { otherwise }\end{cases}
\end{gathered}
$$

Original data

Different embeddings

Original data

Lead-lag path

Quick, Draw! dataset results

Linear neural network

Prediction accuracy with a linear NN.

Quick, Draw! dataset results

Prediction accuracy with a random forest.

Quick, Draw! dataset results

Nearest neighbors

Path embedding
\rightarrow Lead lag
\rightarrow Linear
\rightarrow Rectilinear
\rightarrow Stroke version 1
\rightarrow Stroke version 2
\rightarrow Stroke version 3
\rightarrow Time

Prediction accuracy with 5 nearest neighbors

Quick, Draw! dataset results

XGBoost

Path embedding
\rightarrow Lead lag
\rightarrow Linear
\rightarrow Rectilinear
\rightarrow Stroke version 1
\rightarrow Stroke version 2
\rightarrow Stroke version 3
\rightarrow Time

Prediction accuracy with XGBoost

Urban Sound dataset

10 different sounds: car horn, street music, dork barking...
5435 noisy 1-dimensional times series of average size 171135

Urban Sound dataset results

Random forest

Prediction accuracy with a random forest.

Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope sensors
Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934

Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope sensors
Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934
standing

walking upstairs

jogging

Motion Sense dataset results

Prediction accuracy with XGBoost.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.
\triangleright Good performance of the lead lag path.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.
\triangleright Good performance of the lead lag path.
\triangleright This is due to intrinsic properties of the signature and the embedding, not to domain-specific properties.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.
\triangleright Good performance of the lead lag path.
\triangleright This is due to intrinsic properties of the signature and the embedding, not to domain-specific properties.
\triangleright It is particularly remarkable as the dimension of the input stream is different from one dataset to another.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.
\triangleright Good performance of the lead lag path.
\triangleright This is due to intrinsic properties of the signature and the embedding, not to domain-specific properties.
\triangleright It is particularly remarkable as the dimension of the input stream is different from one dataset to another.
\triangleright Conclusion: the lead lag embedding seems to be the best choice, regardless of the data and algorithm used.

Take-home message

\triangleright Striking fact: some embeddings seem consistently better.
\triangleright Good performance of the lead lag path.
\triangleright This is due to intrinsic properties of the signature and the embedding, not to domain-specific properties.
\triangleright It is particularly remarkable as the dimension of the input stream is different from one dataset to another.
\triangleright Conclusion: the lead lag embedding seems to be the best choice, regardless of the data and algorithm used.
\triangleright Computationally cheap and drastically improves prediction accuracy.

Performance of signatures

Our plan

- For each dataset: lead lag + lag selection.

Our plan

- For each dataset: lead lag + lag selection.

- Quick, Draw! and Motion Sense: 1.

Our plan

- For each dataset: lead lag + lag selection.

- Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

Our plan

- For each dataset: lead lag + lag selection.

- Quick, Draw! and Motion Sense: 1. Urban Sound: 5.
- Quick, Draw!: dense NN with three hidden layers and ReLU activation (around 12 million samples for training and 80000 for validation and test).

Our plan

- For each dataset: lead lag + lag selection.

- Quick, Draw! and Motion Sense: 1. Urban Sound: 5.
- Quick, Draw!: dense NN with three hidden layers and ReLU activation (around 12 million samples for training and 80000 for validation and test).
- Urban Sound: Random Forests.

Our plan

- For each dataset: lead lag + lag selection.

- Quick, Draw! and Motion Sense: 1. Urban Sound: 5.
- Quick, Draw!: dense NN with three hidden layers and ReLU activation (around 12 million samples for training and 80000 for validation and test).
- Urban Sound: Random Forests.
- Motion Sense: XGBoost.

Performance of signature learning

- Quick, Draw!

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $\mathrm{NN}+$ signature features at order $6=54 \%$.
- Urban Sound

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.
\triangleright Our result: Random Forests + signature features at order $5=70 \%$.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.
\triangleright Our result: Random Forests + signature features at order $5=70 \%$.
- Motion Sense

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.
\triangleright Our result: Random Forests + signature features at order $5=70 \%$.
- Motion Sense
\triangleright State of the art: deep NN + autoencoders + multi-objective loss.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $N N+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.
\triangleright Our result: Random Forests + signature features at order $5=70 \%$.
- Motion Sense
\triangleright State of the art: deep NN + autoencoders + multi-objective loss.
\triangleright F1 score $=92.91$.

Performance of signature learning

- Quick, Draw!
\triangleright State of the art: deep CNN trained with several million of samples.
\triangleright Kaggle mean average precision at $3=95 \%$.
\triangleright Our result: small $\mathrm{NN}+$ signature features at order $6=54 \%$.
- Urban Sound
\triangleright State of the art: feature extraction with mixture of experts models.
\triangleright Accuracy $=77.36 \%$.
\triangleright Our result: Random Forests + signature features at order $5=70 \%$.
- Motion Sense
\triangleright State of the art: deep NN + autoencoders + multi-objective loss.
\triangleright F1 score $=92.91$.
\triangleright Our result: XGBoost + signature features at order $3=93.5$.

Conclusion

- Our algorithms have not been tuned to a specific application.

Conclusion

- Our algorithms have not been tuned to a specific application.
- The combination "signature + generic algorithm" \approx state-of-the-art.

Conclusion

- Our algorithms have not been tuned to a specific application.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.

Conclusion

- Our algorithms have not been tuned to a specific application.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.
- A lot of open questions

Thank you!

