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Learning from a data stream

Time series prediction
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Learning from a data stream

Stereo sound recognition
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Learning from a data stream

Automated medical diagnosis from sensor data
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Learning from a data stream

Recognition of characters or handwriting
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Common feature

The predictor is a path X : [a, b]→ Rd .
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Google ”Quick, Draw!” dataset

50 million drawings, 340 classes
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Data representation

A sample from the class flower
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Data representation

A sample from the class flower
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Data representation

A sample from the class flower

x and y coordinates
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Data representation

A sample from the class flower x and y coordinates
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Data representation

A sample from the class flower Time reversed
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Data representation

A sample from the class flower x and y at a different speed
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The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.
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Definition and basic properties



Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0

YtdXt .
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• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0

YtdXt .

Example :

• Xt continuously differentiable:∫ 1

0

YtdXt =

∫ 1

0

YtẊtdt
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Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X is well-defined. Notation:∫ 1

0

YtdXt .

Example :

• Yt = 1 for all t ∈ [0, 1]:∫ 1

0

YtdXt =

∫ 1

0

dXt = X1 − X0.
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Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X )[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X )[0,t] =

∫
0<s<t

S i (X )[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik )(X )[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik )(X )[0,1] is the k-fold iterated integral of X along i1, . . . , ik .
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Signature

Definition
The signature of X is the sequence of real numbers

S(X ) = (1,S1(X ), . . . ,Sd(X ),S (1,1)(X ),S (1,2)(X ), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik )⊂{1,...,d}k
S (i1,...,ik )(X )ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X ) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

17
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Example

For Xt = (X 1
t ,X

2
t ),

X1 =
(∫ 1

0
dX 1

t

∫ 1

0
dX 2

t

)
=
(
X 1
1 − X 1

0 X 2
1 − X 2

0

)

X2 =

(∫ 1

0

∫ t

0
dX 1

s dX
1
t

∫ 1

0

∫ t

0
dX 1

s dX
2
t∫ 1

0

∫ t

0
dX 2

s dX
1
t

∫ 1

0

∫ t

0
dX 2

s dX
2
t

)
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Truncated signature

• Truncated signature at order m:

Sm(X ) = (1,X1,X2, . . . ,Xm).

• Dimension:

sd(m) =
m∑

k=0

dk =
dm+1 − 1

d − 1
.

19
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Geometric interpretation

20



Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + X1t.

• For any I = (i1, . . . , ik),

S I (X ) =
1

k!

k∏
j=1

X
ij
1 .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.
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Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y ) = S(X )⊗ S(Y ).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Fast packages and libraries available in C++ and Python.

22
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Properties 2

Uniqueness
If X has at least one monotone coordinate, then S(X ) determines X

uniquely.

. The signature characterizes paths.

. Trick: add a dummy monotonous component to X .

. Important concept of embedding.

23
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Properties 3

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like

equivalent.

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X )− 〈w ,S(X )〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.

24
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Learning with signatures



Supervised learning

• Goal: understand the relationship between X ∈X and Y ∈ Y .

• Regression: Y = R Classification: Y = {1, . . . , q}.
• Data: (X1,Y1), . . . , (Xn,Yn) ∈X × Y , i.i.d. ∼ (X ,Y ).

• Prediction function: fθ(X ) ≈ Y , θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

25
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Supervised learning

• Loss function ` : Y × Y → R+.

• Empirical risk minimization: choose

θ̂ ∈ argmin
θ∈Rp

1

n

n∑
i=1

`(Yi , fθ(Xi )).

• Least squares regression: Y = R and `(y , fθ(x)) = (y − fθ(x))2.

• Binary classification: Y = {0, 1} and `(y , fθ(x)) = 1[fθ(x) 6=y ].

26
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Signature + machine learning
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Questions

• How should we choose the order of truncation?

• Which embedding should we use?
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Truncation order



Regression model on the signature

• X : [0, 1]→ Rd random path, Y ∈ R random variable.

• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd (m
∗) such that

E[Y |X ] = 〈β∗,Sm∗
(X )〉, and Var(Y |X ) ≤ σ2 <∞.

• Goal: estimate m∗ and β∗.
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Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any m ∈ N, α > 0,

Bm,α =
{
β ∈ Rsd (m) : ‖β‖2 ≤ α

}
.

• For any m ∈ N, β ∈ Bm,α,

Rm,n(β) =
1

n

n∑
i=1

(
Yi − 〈β,Sm(Xi )〉

)2
.

• For any m ∈ N,

L̂n(m) = inf
β∈Bm,α

Rm,n(β).
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Estimation of m∗

Estimator:

m̂ = min
(

argmin
m

(
L̂n(m) + penn(m)

))
.
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Result

Additional assumptions:

(Hα) β∗ ∈ Bm∗,α.

(HK ) There exists KY > 0 and KX > 0 such that almost surely

|Y | ≤ KY and ‖X‖1-var ≤ KX .
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Result

Theorem

Let Kpen > 0, 0 < ρ < 1
2 , and

penn(m) = Kpenn
−ρ
√
sd(m).

Under the assumptions (Hα) and (HK ), for any n ≥ n0,

P (m̂ 6= m∗) ≤ C1 exp
(
−C2n

1−2ρ) ,
where n0, C1 and C2 are explicit constants.

Corollary
m̂ converges almost surely towards m∗.
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Result

We can then estimate β∗ by

β̂ = argmin
β∈Bm̂,α

Rm̂,n(β),

and show that

E
(〈
β̂,S m̂(X )

〉
−
〈
β∗,Sm∗

(X )
〉)2

= O
( 1√

n

)
.
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Path embeddings



Embedding
A way of mapping discrete sequential data into a continuous path.
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Kaggle prediction competition
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Different embeddings

Original data Linear path
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Different embeddings

Original data Rectilinear path
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Different embeddings

Original data Time path
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Different embeddings

Original data Stroke path, version 1
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Different embeddings

Original data Stroke path, version 2
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Different embeddings

Original data Stroke path, version 3
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Different embeddings

Original data

t → (X 1
t ,X

2
t , t,X

3
t ,X

4
t ), where

X 3
t =

{
0 if t < t1

X 1
t−t1 otherwise

X 4
t =

{
0 if t < t1

X 2
t−t1 otherwise
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Different embeddings

Original data Lead-lag path
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Quick, Draw! dataset results

Prediction accuracy with a linear NN.
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Quick, Draw! dataset results

Prediction accuracy with a random forest.
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Quick, Draw! dataset results

Prediction accuracy with 5 nearest neighbors

.
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Quick, Draw! dataset results

Prediction accuracy with XGBoost
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Urban Sound dataset

10 different sounds: car horn, street music, dork barking...

5435 noisy 1-dimensional times series of average size 171 135
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Urban Sound dataset results

Prediction accuracy with a random forest.
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Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope

sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)

74 800 12-dimensional times series of average size 3934
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Motion Sense dataset results

Prediction accuracy with XGBoost.
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Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.
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Performance of signatures



Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

• Quick, Draw!: dense NN with three hidden layers and ReLU

activation (around 12 million samples for training and 80 000 for

validation and test).

• Urban Sound: Random Forests.

• Motion Sense: XGBoost.
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Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle mean average precision at 3 = 95%.

. Our result: small NN + signature features at order 6 = 54%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 70%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: XGBoost + signature features at order 3 = 93.5.
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Conclusion

• Our algorithms have not been tuned to a specific application.

• The combination “signature + generic algorithm” ≈ state-of-the-art.

• Few computing resources and no domain-specific knowledge.

• A lot of open questions
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Thank you!
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