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Learning from a data stream
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Learning from a data stream

A |
\ ﬂ’m‘, .* N‘N‘L ““ \‘IIH o im'ld,‘*ﬂhﬂ'“
]-w rmwu‘wﬂ'wm w‘w" ‘w NMW whmlw

—— AR
| ‘

m 4“1 | -
\ I i ‘v, A T W 7:" A %M’
W VT Y J ¥ , ’\‘ﬁ‘.- /‘mhwﬁ‘ﬂyhp %\ﬂj Wj‘i '~‘,\v‘,\ ‘_“"_W«‘\k!‘!w

Automated medical diagnosis from sensor data
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Recognition of characters or handwriting



Common feature

The predictor is a path X : [a, b] — R.




Google " Quick, Draw!” dataset
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Data representation

A sample from the class flower
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Data representation
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Data representation
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Data representation
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The signature will overcome some of these problems.
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The signature will overcome some of these problems.

> It is a transformation from a path to a sequence of coefficients.
> Independent of time parameterization.
> Encodes geometric properties of the path.

> No loss of information.

13
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Mathematical setting

e A path X :[0,1] — R9. Notation: X;.
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Mathematical setting
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Mathematical setting

e A path X :[0,1] — R9. Notation: X;.
e Assumption: || X||1-var < 00.
e Y :[0,1] = R a continuous path.

e Riemann-Stieljes integral of Y against X is well-defined. Notation:

1
/ Y, dX;.
0

e X, continuously differentiable:

1 1
/ Yt d)(;_L = / YtXt dt
0 0

Example :
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Mathematical setting

e A path X :[0,1] — R9. Notation: X;.
e Assumption: || X||1-var < 00.
e Y :[0,1] = R a continuous path.

e Riemann-Stieljes integral of Y against X is well-defined. Notation:

1
/ Y, dX;.
0

Example :

e Yy=1forall t €0,1]:

1 1
/ Ytht = / dXt = X]_ - XO.
0 0
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
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e X:[0,1] = RY, X = (X',...,X9).
e Forie{l,...,d},

S'(X).q :/ dX, =X/ — X, — a path!
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
Forie{1,...,d},

S'Xp.g = /0 dX, =X/ — X, — a path!
<s<t

For (i,j) € {1,...,d}?,

S (X0 = /

0<s<t

S'(X)po,gdXs = / dX!dX! — a path!

0<r<s<t

Recursively, for (i1, ...,ik) € {1,...,d}¥,
Sl (X0 4 = / dXir. .. dxk.
0<ti<bh< <t <t

o Sli-i)(X)q 7 is the k-fold iterated integral of X along iy, ..., ik.

16



Definition
The signature of X is the sequence of real numbers

S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).
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Definition
The signature of X is the sequence of real numbers

S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).

e d=3—(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,...)

e [ensor notation:

Xi= Y st (X)e, @ w0,

e Signature:

where
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For X, = (X{, X2), -
2 | 2 _ X
X< (faxt fraxt) = (X -x X7 —x5)
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For X, = (X}, X?),
1 vl 1 y2) — 1 1 2 2
X< (faxt fraxt) = (X -x X7 —x5)

X2 — foi fot dXs1 dth foi foz dXs1 dXE)
- t 2 2 D)
Jo Jo dXgdX: [y [ dXidX;
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For X; = (X}, X?),
X! — (f01 dx; foldxt) _ (Xl - X5 X —Xo)

X2 — foi foz dXs dXt foi foi dXs dXt
fo fo dX; dX; fo fo dX; dX;

Rank 0: |:| Rank 1: |:H:H:“:H:|

(scalar) (vector)

Rank 2: (matrix) Rank 3:

N
i
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Truncated signature

e Truncated signature at order m:

S™(X) = (1, XL, X2%,... Xm).
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Truncated signature

e Truncated signature at order m:
S™(X) = (1, X1, X2, X™).

e Dimension:
~ dm+1 1

19



Geometric interpretation

X2

51.2(x)
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Important example

Linear path
e X :[0,1] — RY a linear path.
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Important example

Linear path
e X :[0,1] — RY a linear path.
o X; = Xy + Xit.

e Forany I = (i1,..., i),

k
1 j
-j=1
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Important example

Linear path
e X :[0,1] — RY a linear path.

o X; = Xy + Xit.
e Forany I = (i1,..., i),
sI(X)= = f[x"f
k! L
j=1
> Very useful: in practice, we always deal with piecewise linear paths.

> Needed: concatenation operations.

21



Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
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Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
e XY :[ac]— RY the concatenation.

e Then
S(X*xY)=5(X)®S(Y).
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Chen'’s identity

X :[a,b] = R? and Y : [b,c] — RY paths.
X *Y :[a,c] = R9 the concatenation.
Then

S(X * Y) = S(X)® S(Y).

> We can compute the signature of piecewise linear paths!
> Data stream of p points and truncation at m: O(pd™) operations.

> Fast packages and libraries available in C++ and Python.

22



Uniqueness
If X has at least one monotone coordinate, then S(X) determines X

uniquely.
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Uniqueness
If X has at least one monotone coordinate, then S(X) determines X

uniquely.

> The signature characterizes paths.
> Trick: add a dummy monotonous component to X.

> Important concept of embedding.
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Signature approximation

e D compact subset of paths from [0,1] to R? that are not tree-like
equivalent.
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e D compact subset of paths from [0,1] to R? that are not tree-like
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e f: D — R continuous.

e Then, for every € > 0, there exists w € T(R9) such that, for any

X eD,
{f(X) — <W,S(X)>| <e.
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Signature approximation

e D compact subset of paths from [0,1] to R? that are not tree-like
equivalent.

f: D — R continuous.

e Then, for every € > 0, there exists w € T(R9) such that, for any
XeD,
|F(X) — (w,5(X))| <e.

v

Signature and linear model are happy together!

> This raises many interesting statistical issues.
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Learning with signatures



Supervised learning

e Goal: understand the relationship between X € 2" and Y € .
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Supervised learning

e Goal: understand the relationship between X € 2" and Y € .
e Regression: & =R Classification: & = {1,...,q}.

Data: (X1, Y1),..., (X, Yn) € 2 x #, i.id. ~ (X, Y).
Prediction function: fy(X) = Y, 6 € RP.

. . e
- - \ YA
4 7 iy 1 C
/"\ \ | -
yi=1 y2=1 y3=2 ya =3 Y5 =2

25



Supervised learning

e loss function ¢ : % x % — RT.
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e loss function ¢ : % x % — RT.

e Empirical risk minimization: choose

R 1 <
0 € argmin— (Y, fp(Xi)).
rgming 3 A% (X))

e Least squares regression: % = R and {(y, fy(x)) = (y — fo(x))>.
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Supervised learning

Loss function ¢ : % x % — RT.

Empirical risk minimization: choose

R 1 <
0 € argmin— (Y, fp(Xi)).
rgming 3 A% (X))

Least squares regression: % = R and {(y, fa(x)) = (y — fo(x))>.

Binary classification: 2" = {0,1} and £(y, fy(x)) = Lif, (4]

26



ture 4+ machine learning

Dense network

e}

o ——>» «Flower »

{
(
(
o
C
C
X
X
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e How should we choose the order of truncation?
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e How should we choose the order of truncation?

e Which embedding should we use?

x* %
»®
x P
xk Wy * x Wil
&%
%y * . x i
® \
* ‘
% 3 » |
® % }
* sl
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Truncation order



Regression model on the signature

e X :[0,1] — RY random path, Y € R random variable.
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Regression model on the signature

e X :[0,1] — RY random path, Y € R random variable.
e Assumption: there exists m* € IN, 8* € R%("") such that

E[Y|X] = (8*,S™ (X)), and Var(Y|X) < o? < 0.
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Regression model on the signature

e X :[0,1] — RY random path, Y € R random variable.
e Assumption: there exists m* € IN, 8* € R%("") such that

E[Y|X] = (8*,S™ (X)), and Var(Y|X) < o? < 0.

e Goal: estimate m™ and B*.

29



Estimation of m*

e Data: (X1, Y1),..., (X, Ya) i.id.
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Estimation of m*

e Data: (X1, Y1),..., (X, Ya) i.id.
e Forany me IN, a > 0,

Bra = {8 R4 : |8, < a}.

e Forany me N, 5 € By, 4,

RonalB) = £ 3 (¥ = {6, 5700))’.
=1}
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Estimation of m*

Data: (X1, Y1),..., (Xp, Ya) iind.
e Forany me IN, a > 0,

Bra = {8 R4 : |8, < a}.

e Forany me N, 5 € By, 4,

RonalB) = £ 3 (¥ = {6, 5700))’.
=1}

e Forany me IN,

Z,,(m) = jelgf Rm,n(B).

30



Estimation of m*

Estimator:
m= min(argmin(L,,(m) + penn(m))>.

m

0.08 — loss

—— penalization
—— sum

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
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Additional assumptions:

(Ha) ﬁ* S Bm*,u-
(Hk) There exists Ky > 0 and Kx > 0 such that almost surely

‘Y| < KY and ||X||1—var < KX-

32



Theorem
Let Kpen >0,0< p < 3, and

pen,(m) = Kpent” 4/ sq(m).
Under the assumptions (H,) and (Hk), for any n > ng,

P(m# m*) < Cexp (—Cznl_Z”) ,

where ng, C; and G, are explicit constants.
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Theorem
Let Kpen >0,0< p < 3, and
pen,(m) = Kpent” 4/ sq(m).
Under the assumptions (H,) and (Hk), for any n > ng,
P(m#m*) < Gexp(—Gn'™?),
where ng, C; and G, are explicit constants.

Corollary
m converges almost surely towards m*.

33



We can then estimate 5* by

7 = argmin Rz ,(5),
BGBMJX
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We can then estimate 5* by

J = argmin R,n(8),
BGBrma

and show that

E((5,5700) - (6%,5™ () = 0(=):

34



Path embeddings



Embedding
A way of mapping discrete sequential data into a continuous path.
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Kaggle prediction competition

Google Al - 1,316 teams - 4 months ago

Data Kernels Discussion Leaderboard Rules Team My Submissions

Overview
"Quick, Draw!" was released as an experimental game to et dose 15 think bee leoke 1iker
Evaluation educate the public in a playful way about how Al works. It Learned by laoking at these examples dram by other peole
The game prompts users to draw an image depicting a
Prizes certain category, such as "banana,” “table,” etc. The game
generated more than 1B drawings, of which a subset was
Timeline

publicly released as the basis for this competition’s
training set. That subset contains 50M drawings
encompassing 340 label categories.

Sounds fun, right? Here's the challenge: since the training
data comes from the game itself, drawings can be
incomplete or may not match the label. You'll need to
build a recognizer that can effectively learn from this
noisy data and perform well on a manually-labeled test
set from a different distribution.

#|de || &
& e\ B
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Different embeddings

Original data Linear path



Different embeddings

Original data Rectilinear path



Different embeddings

Original data

Time path
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Different embeddings

Original data

Stroke path, version 1
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Different embeddings

Original data

Stroke path, version 2
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Different embeddings

Original data

Stroke path, version 3

BN W oa 0o o
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Different embeddings

Original data

t — (X2, X2, t, X2, X), where

ift<ty

otherwise

ift<t

otherwise
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Different embeddings

Original data

025 0.50 075 1.00

Lead-lag path
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Quick, Draw! dataset results

Linear neural network

40

Path embedding

30 Lead lag

Linear
Rectilinear
Stroke version 1
Stroke version 2

Stroke version 3

ttt ettt

Time

Log number of features

Prediction accuracy with a linear NN.
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Quick, Draw! dataset results

Random forest

Path embedding
Lead lag

20

Linear
Rectilinear

Stroke version 1

Accuracy

Stroke version 2

Stroke version 3

ttt ettt

Time

5 10
Log number of features

Prediction accuracy with a random forest.
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Quick, Draw! dataset results

Nearest neighbors

20

Path embedding

Lead lag
Linear
Rectilinear

Stroke version 1

Accuracy

Stroke version 2

Stroke version 3

bttt dd

Time

w

10 15
Log number of features

5

Prediction accuracy with 5 nearest neighbors
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Quick, Draw! dataset results

XGBoost

30

Path embedding

Lead lag
20 Linear

Rectilinear

Accuracy

Stroke version 1
Stroke version 2

Stroke version 3

ttt ettt

Time

5 10
Log number of features

Prediction accuracy with XGBoost
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Urban Sound dataset

10 different sounds: car horn, street music, dork barking...
5435 noisy 1-dimensional times series of average size 171135
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Urban Sound dataset results

Random forest

Path embedding
- Leadlag
o Linear

< Time

Log number of features

Prediction accuracy with a random forest.
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Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope
sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934
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Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope
sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934

standing

jogging

ikt e it sttt b bstiedba ) (3 bkl bbbl sl 1)

iy A qli LI
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Motion Sense dataset results

XGBoost

100

80 .
Path embedding
§ —# Lead lag
.§_ # Linear
T w0 + Rectilinear
* Time
40

[} g 12 15
Log number of features

Prediction accuracy with XGBoost.
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Take-home message

> Striking fact: some embeddings seem consistently better.
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Take-home message

> Striking fact: some embeddings seem consistently better.
> Good performance of the lead lag path.

> This is due to intrinsic properties of the signature and the
embedding, not to domain-specific properties.

> It is particularly remarkable as the dimension of the input stream is
different from one dataset to another.

> Conclusion: the lead lag embedding seems to be the best choice,
regardless of the data and algorithm used.

> Computationally cheap and drastically improves prediction accuracy.
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Performance of signatures



e For each dataset: lead lag + lag selection.

Quick, Draw!

10
Logumber o estus

Motion Sense

Urban Sound

54



For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense

w0
”
0
/ 2
7 ¥ y .
i fw {
LR i )/ H
// 20
. /
2 s "
o w0
1 o ! »
- [v—,
Lag 0 1223+ 4+5=6

e Quick, Draw! and Motion Sense: 1.

Urban Sound
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For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense

w0
”
0
/ 2
7 ¥ y .
i fw {
LR i )/ H
// 20
. /
2 s "
o w0
1 o ! »
- [v—,
Lag 0 1223+ 4+5=6

e Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

Urban Sound
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e For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense Urban Sound

'/ S
/ 0

lag ~ 0+ 1+ 234556

e Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

e Quick, Draw!: dense NN with three hidden layers and RelL U
activation (around 12 million samples for training and 80 000 for
validation and test).
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e For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense Urban Sound
“ '/ff’—‘ —
/ 0
Y
§ / i
EE
2
s
o 10
1 10 15 0 1 1
gmmpscattesss o lgmseteawss 0 gmumbsrotteauns
lag © 0= 1+ 23456

e Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

e Quick, Draw!: dense NN with three hidden layers and RelL U
activation (around 12 million samples for training and 80 000 for
validation and test).

e Urban Sound: Random Forests.
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e For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense Urban Sound
“ '/ff’—‘ —
/ 0
Y
§ / i
EE
2
s
o 10
1 10 15 0 1 1
gmmpscattesss o lgmseteawss 0 gmumbsrotteauns
lag © 0= 1+ 23456

e Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

e Quick, Draw!: dense NN with three hidden layers and RelL U
activation (around 12 million samples for training and 80 000 for
validation and test).

e Urban Sound: Random Forests.

e Motion Sense: XGBoost.
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Performance of signature learning

e Quick, Draw!
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e Quick, Draw!
> State of the art: deep CNN trained with several million of samples.
> Kaggle mean average precision at 3 = 95%.
> Our result: small NN + signature features at order 6 = 54%.
e Urban Sound
> State of the art: feature extraction with mixture of experts models.
> Accuracy = 77.36%.
> Our result: Random Forests + signature features at order 5 = 70%.
e Motion Sense

> State of the art: deep NN + autoencoders 4+ multi-objective loss.
> F1 score = 92.91.
> Our result: XGBoost + signature features at order 3 = 93.5.
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A lot of open questions
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Thank youl!
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