A generalized signature method for multivariate time series classification

Second Symposium on Machine Learning and Dynamical Systems, Fields Institute, Toronto

Adeline Fermanian
September 25th 2020

SORBONNE UNIVERSITE

Joint work with

Benoît Cadre
University Rennes 2

Terry Lyons
University of
OXFORD

Patrick Kidger
University of
Oxford

Gérard Biau Sorbonne University

James Morrill
University of
Oxford

Time series classification

Automated medical diagnosis from sensor data

Time series classification

Characters recognition

Common feature

The predictor is a path $X:[a, b] \rightarrow \mathbb{R}^{d}$.

Data representation

A sample from the class flower

Data representation

A sample from the class flower

Data representation

A sample from the class flower

x and y coordinates

Data representation

A sample from the class flower

Time reversed

Data representation

A sample from the class flower

x and y at a different speed

The signature will overcome some of these problems.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.

The signature will overcome some of these problems.
\triangleright It is a transformation from a path to a sequence of coefficients.
\triangleright Independent of time parameterization.
\triangleright Encodes geometric properties of the path.
\triangleright No loss of information.

Definition and basic properties

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1-\mathrm{var}}<\infty$.
- Path integral:

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- Path integral:
- X is differentiable, $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.

$$
\int_{0}^{1} Y_{t} d X_{t}^{i}=\int_{0}^{1} Y_{t} \dot{X}_{t}^{i} d t
$$

Mathematical setting

- A path $X:[0,1] \rightarrow \mathbb{R}^{d}$. Notation: X_{t}.
- Assumption: $\|X\|_{1 \text {-var }}<\infty$.
- Path integral:
- X is differentiable, $Y:[0,1] \rightarrow \mathbb{R}$ a continuous path.

$$
\int_{0}^{1} Y_{t} d X_{t}^{i}=\int_{0}^{1} Y_{t} \dot{X}_{t}^{i} d t
$$

- Generalization to $\|X\|_{1 \text {-var }}<\infty$ via the Riemann-Stieltjes integral.

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j}
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

Iterated integrals

- $X:[0,1] \rightarrow \mathbb{R}^{d}, X=\left(X^{1}, \ldots, X^{d}\right)$.
- For $i \in\{1, \ldots, d\}$,

$$
S^{i}(X)_{[0, t]}=\int_{0<s<t} d X_{s}^{i}=X_{t}^{i}-X_{0}^{i} \quad \rightarrow \text { a path }
$$

- For $(i, j) \in\{1, \ldots, d\}^{2}$,

$$
S^{i, j}(X)_{[0, t]}=\int_{0<s<t} S^{i}(X)_{[0, s]} d X_{s}^{j}=\int_{0<r<s<t} d X_{r}^{i} d X_{s}^{j} \quad \rightarrow \text { a path }
$$

- Recursively, for $\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, d\}^{k}$,

$$
S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0, t]}=\int_{0<t_{1}<t_{2}<\cdots<t_{k}<t} d X_{t_{1}}^{i_{1}} \ldots d X_{t_{k}}^{i_{k}} .
$$

- $S^{\left(i_{1}, \ldots, i_{k}\right)}(X)_{[0,1]}$ is the k-fold iterated integral of X along i_{1}, \ldots, i_{k}.

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
X^{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
X^{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, X^{1}, X^{2}, \ldots, X^{k}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

Signature

Definition

The signature of X is the sequence of real numbers

$$
S(X)=\left(1, S^{1}(X), \ldots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \ldots\right)
$$

- $d=3 \rightarrow(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113, \ldots)$
- Tensor notation:

$$
X^{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \subset\{1, \ldots, d\}^{k}} S^{\left(i_{1}, \ldots, i_{k}\right)}(X) e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

- Signature:

$$
S(X)=\left(1, X^{1}, X^{2}, \ldots, X^{k}, \ldots\right) \in T\left(\mathbb{R}^{d}\right)
$$

where

$$
T\left(\mathbb{R}^{d}\right)=1 \oplus \mathbb{R}^{d} \oplus\left(\mathbb{R}^{d}\right)^{\otimes 2} \oplus \cdots \oplus\left(\mathbb{R}^{d}\right)^{\otimes k} \oplus \cdots
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
X^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right)
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
X^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
X^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Example

For $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$,

$$
\begin{gathered}
X^{1}=\left(\begin{array}{ll}
\int_{0}^{1} d X_{t}^{1} & \int_{0}^{1} d X_{t}^{2}
\end{array}\right)=\left(\begin{array}{ll}
X_{1}^{1}-X_{0}^{1} & X_{1}^{2}-X_{0}^{2}
\end{array}\right) \\
X^{2}=\left(\begin{array}{ll}
\int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{1} d X_{t}^{2} \\
\int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{1} & \int_{0}^{1} \int_{0}^{t} d X_{s}^{2} d X_{t}^{2}
\end{array}\right)
\end{gathered}
$$

Truncated signature

- Truncated signature at order m :

$$
S^{m}(X)=\left(1, X^{1}, X^{2}, \ldots, X^{m}\right)
$$

Truncated signature

- Truncated signature at order m :

$$
S^{m}(X)=\left(1, X^{1}, X^{2}, \ldots, X^{m}\right)
$$

- Dimension:

$$
s_{d}(m)=\sum_{k=0}^{m} d^{k}=\frac{d^{m+1}-1}{d-1}
$$

Geometric interpretation

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right) t$.

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right) t$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k}\left(X_{1}-X_{0}\right)^{i_{j}}
$$

Important example

Linear path

- $X:[0,1] \rightarrow \mathbb{R}^{d}$ a linear path.
- $X_{t}=X_{0}+\left(X_{1}-X_{0}\right) t$.
- For any $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
S^{\prime}(X)=\frac{1}{k!} \prod_{j=1}^{k}\left(X_{1}-X_{0}\right)^{i_{j}}
$$

\triangleright Very useful: in practice, we always deal with piecewise linear paths.
\triangleright Needed: concatenation operations.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

Properties 1

Chen's identity

- $X:[a, b] \rightarrow \mathbb{R}^{d}$ and $Y:[b, c] \rightarrow \mathbb{R}^{d}$ paths.
- $X * Y:[a, c] \rightarrow \mathbb{R}^{d}$ the concatenation.
- Then

$$
S(X * Y)=S(X) \otimes S(Y)
$$

\triangleright We can compute the signature of piecewise linear paths!
\triangleright Data stream of p points and truncation at $m: O\left(p d^{m}\right)$ operations.
\triangleright Fast packages and libraries available in C++ and Python.

Properties 2

Uniqueness
If X has at least one monotone coordinate, then $S(X)$ determines X uniquely up to translations and reparametrizations.

Properties 2

Uniqueness

If X has at least one monotone coordinate, then $S(X)$ determines X uniquely up to translations and reparametrizations.
\triangleright The signature characterizes paths.
\triangleright Trick: add a dummy monotone component to X.
\triangleright Important concept of augmentation.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

Properties 3

Signature approximation

- D compact subset of paths from $[0,1]$ to \mathbb{R}^{d} that are not tree-like equivalent.
- $f: D \rightarrow \mathbb{R}$ continuous.
- Then, for every $\varepsilon>0$, there exists $w \in T\left(\mathbb{R}^{d}\right)$ such that, for any $X \in D$,

$$
|f(X)-\langle w, S(X)\rangle| \leq \varepsilon .
$$

\triangleright Signature and linear model are happy together!
\triangleright This raises many interesting statistical issues.

Conclusion

\triangleright The signature is a good descriptor of a path: combine it with any machine learning "black box" algorithm.

Conclusion

\triangleright The signature is a good descriptor of a path: combine it with any machine learning "black box" algorithm.

Conclusion

\triangleright The signature is a good descriptor of a path: combine it with any machine learning "black box" algorithm.

\triangleright Flexible tool and many choices: transformations to the path, domain of integration...

Conclusion

\triangleright The signature is a good descriptor of a path: combine it with any machine learning "black box" algorithm.

\triangleright Flexible tool and many choices: transformations to the path, domain of integration...
\triangleright Could we find a canonical signature pipeline that would be a domain-agnostic starting point for practitioners?

A generalized signature method

Overview

- Goal: systematic comparison of the different variations of the signature method.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.

Overview

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.
- Give practitioners some simple, domain-agnostic guidelines for a first signature algorithm.

Framework

- Input: a sequence $x \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\} .
$$

Framework

- Input: a sequence $x \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\} .
$$

Racketsports dataset

A sample \times with $d=6, n=30$

Framework

- Input: a sequence $x \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\} .
$$

- Output: a label $y \in\{1, \ldots, q\}$.

Framework

- Input: a sequence $x \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, where

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{d}, n \in \mathbb{N}\right\} .
$$

- Output: a label $y \in\{1, \ldots, q\}$.
\triangleright Racketsports dataset: $q=4$
\rightarrow forehand squash, backhand squash, clear badminton, smash badminton.

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p} .
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.

Framework

\triangleright For some e, $p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.
Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\mathrm{post}} \circ S^{m} \circ \rho_{\mathrm{pre}} \circ W^{i, j} \circ \phi^{k}\right)(\mathrm{x}) .
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): S\left(\mathbb{R}^{e}\right) \rightarrow S\left(S\left(\mathbb{R}^{e}\right)\right)^{q} .
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.

Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\mathrm{post}} \circ S^{m} \circ \rho_{\mathrm{pre}} \circ W^{i, j} \circ \phi^{k}\right)(\mathrm{x}) .
$$

Augmentations

Different goals:

\triangleright Sensitivity to properties of the path.

Augmentations

Different goals:

\triangleright Sensitivity to properties of the path.
\triangleright Dimension reduction.

Augmentations

Different goals:

\triangleright Sensitivity to properties of the path.
\triangleright Dimension reduction.
\triangleright Data-dependent transformation \rightarrow make the path adapted to signatures.

Augmentations

- Time augmentation

$$
\phi(x)=\left(\left(1, x_{1}\right), \ldots,\left(n, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right)
$$

Augmentations

- Time augmentation

$$
\phi(x)=\left(\left(1, x_{1}\right), \ldots,\left(n, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right)
$$

Sample $\mathrm{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathrm{x}) \in \mathcal{S}\left(\mathbb{R}^{7}\right)$

Augmentations

- Time augmentation

$$
\phi(\mathrm{x})=\left(\left(1, x_{1}\right), \ldots,\left(n, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right)
$$

Sample $\mathrm{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathrm{x}) \in \mathcal{S}\left(\mathbb{R}^{7}\right)$
\triangleright Sensitivity to parametrization and ensures signature uniqueness.

Augmentations

- Lead-lag augmentation

$$
\phi(\mathrm{x})=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right) .
$$

Augmentations

- Lead-lag augmentation

$$
\phi(x)=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)
$$

Sample $x \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathrm{x}) \in \mathcal{S}\left(\mathbb{R}^{12}\right)$

Augmentations

- Lead-lag augmentation

$$
\phi(x)=\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right), \ldots,\left(x_{n}, x_{n}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)
$$

Sample $\mathrm{x} \in \mathcal{S}\left(\mathbb{R}^{6}\right)$

Augmented path $\phi(\mathrm{x}) \in \mathcal{S}\left(\mathbb{R}^{12}\right)$
\triangleright Captures the quadratic variation of a process.

Augmentations

- Basepoint augmentation

$$
\phi(\mathrm{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

Augmentations

- Basepoint augmentation

$$
\phi(\mathrm{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

- Invisibility-reset augmentation

$$
\phi(x)=\left(\left(1, x_{1}\right), \ldots,\left(1, x_{n-1}\right),\left(1, x_{n}\right),\left(0, x_{n}\right),(0,0)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right)
$$

Augmentations

- Basepoint augmentation

$$
\phi(\mathrm{x})=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

- Invisibility-reset augmentation

$$
\phi(\mathrm{x})=\left(\left(1, x_{1}\right), \ldots,\left(1, x_{n-1}\right),\left(1, x_{n}\right),\left(0, x_{n}\right),(0,0)\right) \in \mathcal{S}\left(\mathbb{R}^{d+1}\right)
$$

\triangleright Sensitivity to translations.

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
=\left(\phi^{1}, \ldots, \phi^{p}\right): S\left(\mathbb{R}^{d}\right) \rightarrow S\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.

\triangleright Rescaling operation ρ post or ρ pre.
Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{i, j} \circ \phi^{k}\right)(x)
$$

Windows

- Global window

$$
W(x)=(x) \in \mathcal{S}\left(\mathbb{R}^{e}\right)
$$

Windows

- Sliding window

$$
W(\mathrm{x})=\left(\mathrm{x}_{1, \ell}, \mathrm{x}_{I+1, l+\ell}, \mathrm{x}_{2 /+1,2 /+\ell}, \ldots\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)
$$

Windows

- Expanding window

$$
W(x)=\left(x_{1, \ell}, x_{1, l+\ell}, x_{1,2 l+\ell}, \ldots\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)
$$

Windows

- Dyadic window

$$
W(x)=\left(W^{1}(x), \ldots, W^{q}(x)\right) \in \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
=\left(Q^{1}, \ldots, e^{p}\right): S\left(\mathbb{R}^{d}\right) \rightarrow S\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): S\left(\mathbb{R}^{e}\right) \rightarrow S\left(S\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.

Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{i, j} \circ \phi^{k}\right)(x)
$$

Framework

- Signature transform

$$
S^{m}(x)=\left(1, X^{1}, X^{2}, \ldots, X^{m}\right) .
$$

Framework

- Signature transform

$$
S^{m}(\mathrm{x})=\left(1, \mathrm{X}^{1}, \mathrm{X}^{2}, \ldots, \mathrm{X}^{\mathrm{m}}\right) .
$$

- Logsignature transform $\log \left(S^{m}(\mathrm{x})\right)$, where for any $a \in T\left(\left(\mathbb{R}^{d}\right)\right)$,

$$
\log (a)=\sum_{k \geq 0} \frac{(-1)^{k}}{k}(1-a)^{\otimes k} .
$$

Framework

- Signature transform

$$
S^{m}(x)=\left(1, \mathrm{X}^{1}, \mathrm{X}^{2}, \ldots, \mathrm{X}^{\mathrm{m}}\right) .
$$

- Logsignature transform $\log \left(S^{m}(\mathrm{x})\right)$, where for any $a \in T\left(\left(\mathbb{R}^{d}\right)\right)$,

$$
\log (a)=\sum_{k \geq 0} \frac{(-1)^{k}}{k}(1-a)^{\otimes k} .
$$

\triangleright Same information and logsignature less dimensional but no linear approximation property.

Signature versus logsignature

Table 1: Typical dimensions of $S^{m}(x)$ and $\log \left(S^{m}(\mathrm{x})\right)$.

	$d=2$	$d=3$	$d=6$
$m=1$	$2 / 2$	$3 / 3$	$6 / 6$
$m=2$	$6 / 3$	$12 / 6$	$42 / 21$
$m=5$	$62 / 14$	$363 / 80$	$9330 / 1960$
$m=7$	$254 / 41$	$3279 / 508$	$335922 / 49685$

Framework

\triangleright For some $e, p \in \mathbb{N}$, an augmentation is a map

$$
=\left(\delta^{1}, \ldots, \delta^{p}\right): S\left(\mathbb{R}^{d}\right) \rightarrow S\left(\mathbb{R}^{e}\right)^{p}
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): S\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(S\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.

Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\text {post }} \circ S^{m} \circ \rho_{\text {pre }} \circ W^{i, j} \circ \phi^{k}\right)(x)
$$

Framework

\triangleright For some e, $p \in \mathbb{N}$, an augmentation is a map

$$
\phi=\left(\phi^{1}, \ldots, \phi^{p}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{e}\right)^{p} .
$$

\triangleright For some $q \in \mathbb{N}$, a window is a map

$$
W=\left(W^{1}, \ldots, W^{q}\right): \mathcal{S}\left(\mathbb{R}^{e}\right) \rightarrow \mathcal{S}\left(\mathcal{S}\left(\mathbb{R}^{e}\right)\right)^{q}
$$

\triangleright Signature or logsignature transform: S^{m}.
\triangleright Rescaling operation $\rho_{\text {post }}$ or $\rho_{\text {pre }}$.
Feature set

$$
\mathrm{y}_{i, j, k}=\left(\rho_{\mathrm{post}} \circ S^{m} \circ \rho_{\mathrm{pre}} \circ W^{i, j} \circ \phi^{k}\right)(\mathrm{x}) .
$$

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline:

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi\right)(\mathrm{x}) .
$$

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi\right)(x) .
$$

- Vary each group of options with regards to this baseline.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi\right)(x) .
$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.

Empirical study methodology

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth $3+$ pre-signature scaling

$$
\left(S^{3} \circ \rho_{\text {pre }} \circ \phi\right)(x) .
$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.
$\rightarrow 9984$ combinations.

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.

	Window			
Dataset	Global	Sliding	Expanding	Dyadic
ArticularyWordRecognition	96.3%	89.3%	99.0%	99.0%
AtrialFibrillation	46.7%	46.7%	46.7%	60.0%
BasicMotions	100.0%	100.0%	100.0%	100.0%
CharacterTrajectories	93.2%	94.6%	96.9%	97.1%
Cricket	97.2%	93.1%	97.2%	95.8%

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

	Window			
Dataset	Global	Sliding	Expanding	Dyadic
ArticularyWordRecognition	96.3%	89.3%	99.0%	99.0%
AtrialFibrillation	46.7%	46.7%	46.7%	60.0%
BasicMotions	100.0%	100.0%	100.0%	100.0%
CharacterTrajectories	93.2%	94.6%	96.9%	97.1%
Cricket	97.2%	93.1%	97.2%	95.8%

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

	Window			
Dataset	Global	Sliding	Expanding	Dyadic
ArticularyWordRecognition	3	4	1.5	1.5
AtrialFibrillation	3	3	3	1
BasicMotions	2	2	2	2
CharacterTrajectories	4	3	2	1
Cricket	1.5	4	1.5	3

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

	Window			
Dataset	Global	Sliding	Expanding	Dyadic
ArticularyWordRecognition	3	4	1.5	1.5
AtrialFibrillation	3	3	3	1
BasicMotions	2	2	2	2
CharacterTrajectories	4	3	2	1
Cricket	1.5	4	1.5	3
\vdots	\vdots	\vdots	\vdots	\vdots
Average ranks	2.83	3.04	2.17	$\mathbf{1 . 7 3}$

Empirical study methodology

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.
- Use a critical differences plot, a global Friedman test, and pairwise Wilcoxon signed-rank tests at 5% with Holm's alpha correction.

Results

\triangleright Windows:

Results

\triangleright Invariance-removing augmentations:

Results

\triangleright Other augmentations:

Results

\triangleright Signature versus logsignature transform:

	Signature	Logsignature
Average ranks	$\mathbf{1 . 2 5}$	1.75
p-value		0.01

Results

\triangleright Rescalings:

Canonical signature pipeline

\triangleright Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.

Canonical signature pipeline

\triangleright Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.
\triangleright The lead-lag augmentation should be considered, but we do not recommend it in general, due to its computational cost.

Canonical signature pipeline

\triangleright Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.
\triangleright The lead-lag augmentation should be considered, but we do not recommend it in general, due to its computational cost.
\triangleright Use hierarchical dyadic windows, and the signature transform; both have a depth hyperparameter that must be optimised.

Canonical signature pipeline

\rightarrow Implement this pipeline on the 30 datasets from the UEA archive and compare it to benchmark classifiers.

Canonical signature pipeline

\rightarrow Implement this pipeline on the 30 datasets from the UEA archive and compare it to benchmark classifiers.

Canonical signature pipeline

Conclusion

- Signatures are a flexible tool.

Conclusion

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.

Conclusion

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm" \approx state-of-the-art.

Conclusion

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.

Conclusion

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm" \approx state-of-the-art.
- Few computing resources and no domain-specific knowledge.
- A lot of open questions and potential applications.

Thank you!

