# A generalized signature method for multivariate time series classification

# Second Symposium on Machine Learning and Dynamical Systems, Fields Institute, Toronto

Adeline Fermanian

September 25th 2020





**\* île**de**France** 

#### Joint work with



Benoît Cadre UNIVERSITY RENNES 2



**Gérard Biau** Sorbonne University



Terry Lyons University of Oxford



Patrick Kidger UNIVERSITY OF OXFORD



James Morrill UNIVERSITY OF OXFORD

#### Time series classification



Automated medical diagnosis from sensor data

#### Time series classification



**Characters** recognition

The predictor is a path  $X : [a, b] \to \mathbb{R}^d$ .



A sample from the class flower



A sample from the class flower





A sample from the class flower

x and y coordinates





A sample from the class flower

Time reversed



A sample from the class flower

x and y at a different speed

▷ It is a transformation from a path to a sequence of coefficients.

- $\triangleright$  It is a transformation from a path to a sequence of coefficients.
- ▷ Independent of time parameterization.

- ▷ It is a transformation from a path to a sequence of coefficients.
- ▷ Independent of time parameterization.
- ▷ Encodes geometric properties of the path.

- ▷ It is a transformation from a path to a sequence of coefficients.
- ▷ Independent of time parameterization.
- ▷ Encodes geometric properties of the path.
- $\triangleright$  No loss of information.

# **Definition and basic properties**

• A path  $X : [0,1] \to \mathbb{R}^d$ . Notation:  $X_t$ .

# Mathematical setting

- A path  $X : [0,1] \to \mathbb{R}^d$ . Notation:  $X_t$ .
- Assumption:  $||X||_{1-\text{var}} < \infty$ .
- Path integral:

- A path  $X : [0,1] \to \mathbb{R}^d$ . Notation:  $X_t$ .
- Assumption:  $||X||_{1-\text{var}} < \infty$ .
- Path integral:
  - X is differentiable,  $Y : [0,1] \rightarrow \mathbb{R}$  a continuous path.

$$\int_0^1 Y_t dX_t^i = \int_0^1 Y_t \dot{X}_t^i dt.$$

- A path  $X : [0,1] \to \mathbb{R}^d$ . Notation:  $X_t$ .
- Assumption:  $||X||_{1-\text{var}} < \infty$ .
- Path integral:
  - X is differentiable,  $Y : [0,1] \rightarrow \mathbb{R}$  a continuous path.

$$\int_0^1 Y_t dX_t^i = \int_0^1 Y_t \dot{X}_t^i dt$$

• Generalization to  $\|X\|_{1-var} < \infty$  via the Riemann-Stieltjes integral.

• 
$$X : [0,1] \to \mathbb{R}^d$$
,  $X = (X^1, \dots, X^d)$ .

•  $X : [0,1] \to \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, \ldots, d\}$$
,

$$S^{i}(X)_{[0,t]} = \int_{0 < s < t} dX_{s}^{i} = X_{t}^{i} - X_{0}^{i}$$

•  $X : [0,1] \to \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, \ldots, d\}$$
,

$$S^i(X)_{[0,t]} = \int_{0 < s < t} dX^i_s = X^i_t - X^i_0 \quad o \text{ a path}!$$

•  $X: [0,1] \rightarrow \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, \ldots, d\}$$
,

$$S^i(X)_{[0,t]} = \int_{0 < s < t} dX^i_s = X^i_t - X^i_0 \quad o ext{ a path}!$$

• For 
$$(i, j) \in \{1, \dots, d\}^2$$
,

$$S^{i,j}(X)_{[0,t]} = \int_{0 < s < t} S^i(X)_{[0,s]} dX_s^j = \int_{0 < r < s < t} dX_r^i dX_s^j$$

•  $X: [0,1] \rightarrow \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, \ldots, d\}$$
,

$$S^i(X)_{[0,t]} = \int_{0 < s < t} dX^i_s = X^i_t - X^i_0 \quad o ext{ a path}!$$

• For 
$$(i, j) \in \{1, \dots, d\}^2$$
,

$$S^{i,j}(X)_{[0,t]} = \int_{0 < s < t} S^i(X)_{[0,s]} dX^j_s = \int_{0 < r < s < t} dX^i_r dX^j_s \quad o \text{ a path}!$$

•  $X: [0,1] \rightarrow \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, \ldots, d\}$$
,

$$S^i(X)_{[0,t]} = \int_{0 < s < t} dX^i_s = X^i_t - X^i_0 \quad o ext{ a path}!$$

• For 
$$(i, j) \in \{1, ..., d\}^2$$
,

$$S^{i,j}(X)_{[0,t]} = \int_{0 < s < t} S^i(X)_{[0,s]} dX^j_s = \int_{0 < r < s < t} dX^i_r dX^j_s \quad o \text{ a path}!$$

• Recursively, for  $(i_1, \ldots, i_k) \in \{1, \ldots, d\}^k$ ,

$$S^{(i_1,\ldots,i_k)}(X)_{[0,t]} = \int_{0 < t_1 < t_2 < \cdots < t_k < t} dX^{i_1}_{t_1} \ldots dX^{i_k}_{t_k}.$$

•  $X: [0,1] \rightarrow \mathbb{R}^d$ ,  $X = (X^1, \dots, X^d)$ .

• For 
$$i \in \{1, ..., d\}$$
,

$$S^i(X)_{[0,t]} = \int_{0 < s < t} dX^i_s = X^i_t - X^i_0 \quad o ext{ a path}!$$

• For 
$$(i, j) \in \{1, ..., d\}^2$$
,

$$S^{i,j}(X)_{[0,t]} = \int_{0 < s < t} S^i(X)_{[0,s]} dX^j_s = \int_{0 < r < s < t} dX^i_r dX^j_s \quad o \text{ a path}!$$

• Recursively, for  $(i_1,\ldots,i_k)\in\{1,\ldots,d\}^k$ ,

$$S^{(i_1,\ldots,i_k)}(X)_{[0,t]} = \int_{0 < t_1 < t_2 < \cdots < t_k < t} dX^{i_1}_{t_1} \ldots dX^{i_k}_{t_k}.$$

•  $S^{(i_1,\ldots,i_k)}(X)_{[0,1]}$  is the *k*-fold iterated integral of X along  $i_1,\ldots,i_k$ .

#### Definition

The signature of X is the sequence of real numbers

$$S(X) = (1, S^{1}(X), \dots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \dots).$$

#### Definition

The signature of X is the sequence of real numbers

$$S(X) = (1, S^{1}(X), \dots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \dots)$$

• 
$$d = 3 \rightarrow (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, \ldots)$$

#### Definition

The signature of X is the sequence of real numbers

$$S(X) = (1, S^{1}(X), \dots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \dots).$$

- $d = 3 \rightarrow (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, \ldots)$
- Tensor notation:

$$\mathsf{X}^{\mathsf{k}} = \sum_{(i_1,\ldots,i_k)\subset\{1,\ldots,d\}^k} S^{(i_1,\ldots,i_k)}(X) e_{i_1}\otimes\cdots\otimes e_{i_k}.$$

#### Definition

The signature of X is the sequence of real numbers

$$S(X) = (1, S^{1}(X), \dots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \dots).$$

- $d = 3 \rightarrow (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, \ldots)$
- Tensor notation:

$$\mathsf{X}^{\mathsf{k}} = \sum_{(i_1,\ldots,i_k) \subset \{1,\ldots,d\}^k} S^{(i_1,\ldots,i_k)}(X) e_{i_1} \otimes \cdots \otimes e_{i_k}.$$

• Signature:

$$S(X) = (1, \mathsf{X}^1, \mathsf{X}^2, \dots, \mathsf{X}^k, \dots) \in T(\mathbb{R}^d)$$

#### Definition

The signature of X is the sequence of real numbers

$$S(X) = (1, S^{1}(X), \dots, S^{d}(X), S^{(1,1)}(X), S^{(1,2)}(X), \dots).$$

- $d = 3 \rightarrow (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, \ldots)$
- Tensor notation:

$$\mathsf{X}^{\mathsf{k}} = \sum_{(i_1,\ldots,i_k) \subset \{1,\ldots,d\}^k} S^{(i_1,\ldots,i_k)}(X) e_{i_1} \otimes \cdots \otimes e_{i_k}.$$

• Signature:

$$S(X) = (1, \mathsf{X}^1, \mathsf{X}^2, \dots, \mathsf{X}^k, \dots) \in T(\mathbb{R}^d),$$

where

$$\mathcal{T}(\mathbb{R}^d) = 1 \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \cdots \oplus (\mathbb{R}^d)^{\otimes k} \oplus \cdots$$

# Example

For 
$$X_t = (X_t^1, X_t^2)$$
,  
 $X^1 = \left(\int_0^1 dX_t^1 \quad \int_0^1 dX_t^2\right) = \left(X_1^1 - X_0^1 \quad X_1^2 - X_0^2\right)$ 

# Example

For 
$$X_t = (X_t^1, X_t^2)$$
,  

$$X^1 = \begin{pmatrix} \int_0^1 dX_t^1 & \int_0^1 dX_t^2 \end{pmatrix} = \begin{pmatrix} X_1^1 - X_0^1 & X_1^2 - X_0^2 \end{pmatrix}$$

$$X^2 = \begin{pmatrix} \int_0^1 \int_0^t dX_s^1 dX_t^1 & \int_0^1 \int_0^t dX_s^1 dX_t^2 \\ \int_0^1 \int_0^t dX_s^2 dX_t^1 & \int_0^1 \int_0^t dX_s^2 dX_t^2 \end{pmatrix}$$

# Example

For 
$$X_t = (X_t^1, X_t^2)$$
,  
 $X^1 = \left( \int_0^1 dX_t^1 \quad \int_0^1 dX_t^2 \right) = \left( X_1^1 - X_0^1 \quad X_1^2 - X_0^2 \right)$ 
 $X^2 = \left( \int_0^1 \int_0^t dX_s^1 dX_t^1 \quad \int_0^1 \int_0^t dX_s^1 dX_t^2 \right)$ 



• Truncated signature at order *m*:

$$S^m(X) = (1, X^1, X^2, \dots, X^m).$$
• Truncated signature at order *m*:

$$S^m(X) = (1, X^1, X^2, \dots, X^m).$$

• Dimension:

$$s_d(m) = \sum_{k=0}^m d^k = rac{d^{m+1}-1}{d-1}.$$

## **Geometric interpretation**



•  $X: [0,1] \to \mathbb{R}^d$  a linear path.

- $X: [0,1] \to \mathbb{R}^d$  a linear path.
- $X_t = X_0 + (X_1 X_0)t$ .

- $X: [0,1] \to \mathbb{R}^d$  a linear path.
- $X_t = X_0 + (X_1 X_0)t$ .
- For any  $I = (i_1, ..., i_k)$ ,

$$S'(X) = rac{1}{k!} \prod_{j=1}^{k} (X_1 - X_0)^{i_j}.$$

- $X:[0,1] \to \mathbb{R}^d$  a linear path.
- $X_t = X_0 + (X_1 X_0)t$ .
- For any  $I = (i_1, ..., i_k)$ ,

$$S'(X) = \frac{1}{k!} \prod_{j=1}^{k} (X_1 - X_0)^{i_j}.$$

Very useful: in practice, we always deal with piecewise linear paths.
 Needed: concatenation operations.

•  $X:[a,b] \to \mathbb{R}^d$  and  $Y:[b,c] \to \mathbb{R}^d$  paths.

- $X: [a, b] \to \mathbb{R}^d$  and  $Y: [b, c] \to \mathbb{R}^d$  paths.
- $X * Y : [a, c] \to \mathbb{R}^d$  the concatenation.

- $X:[a,b] \to \mathbb{R}^d$  and  $Y:[b,c] \to \mathbb{R}^d$  paths.
- $X * Y : [a, c] \to \mathbb{R}^d$  the concatenation.
- Then

$$S(X * Y) = S(X) \otimes S(Y).$$

- $X:[a,b] 
  ightarrow \mathbb{R}^d$  and  $Y:[b,c] 
  ightarrow \mathbb{R}^d$  paths.
- $X * Y : [a, c] \rightarrow \mathbb{R}^d$  the concatenation.
- Then

$$S(X * Y) = S(X) \otimes S(Y).$$

- ▷ We can compute the signature of piecewise linear paths!
- $\triangleright$  Data stream of *p* points and truncation at *m*:  $O(pd^m)$  operations.
- ▷ Fast packages and libraries available in C++ and Python.

#### Uniqueness

If X has at least one monotone coordinate, then S(X) determines X uniquely up to translations and reparametrizations.

#### Uniqueness

If X has at least one monotone coordinate, then S(X) determines X uniquely up to translations and reparametrizations.

- ▷ The signature characterizes paths.
- $\triangleright$  Trick: add a dummy monotone component to X.
- ▷ Important concept of augmentation.

• D compact subset of paths from [0,1] to  $\mathbb{R}^d$  that are not tree-like equivalent.

- *D* compact subset of paths from [0, 1] to  $\mathbb{R}^d$  that are not tree-like equivalent.
- $f: D \to \mathbb{R}$  continuous.

- *D* compact subset of paths from [0, 1] to  $\mathbb{R}^d$  that are not tree-like equivalent.
- $f: D \to \mathbb{R}$  continuous.
- Then, for every  $\varepsilon > 0$ , there exists  $w \in T(\mathbb{R}^d)$  such that, for any  $X \in D$ ,

$$|f(X) - \langle w, S(X) \rangle| \leq \varepsilon.$$

- *D* compact subset of paths from [0, 1] to  $\mathbb{R}^d$  that are not tree-like equivalent.
- $f: D \to \mathbb{R}$  continuous.
- Then, for every  $\varepsilon > 0$ , there exists  $w \in T(\mathbb{R}^d)$  such that, for any  $X \in D$ ,

$$|f(X) - \langle w, S(X) \rangle| \leq \varepsilon.$$

- Signature and linear model are happy together!
- ▷ This raises many interesting statistical issues.





▷ Flexible tool and many choices: transformations to the path, domain of integration...



- ▷ Flexible tool and many choices: transformations to the path, domain of integration...
- Could we find a canonical signature pipeline that would be a domain-agnostic starting point for practitioners?

# A generalized signature method

• Goal: systematic comparison of the different variations of the signature method.

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.

- Goal: systematic comparison of the different variations of the signature method.
- Empirical study over 26 datasets of time series classification.
- Define a generalised signature method as a framework to capture all these variations.
- Give practitioners some simple, domain-agnostic guidelines for a first signature algorithm.

• Input: a sequence  $\mathsf{x} \in \mathcal{S}(\mathbb{R}^d)$ , where

$$\mathcal{S}(\mathbb{R}^d) = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{R}^d, n \in \mathbb{N}\}.$$

## Framework

• Input: a sequence  $\mathsf{x} \in \mathcal{S}(\mathbb{R}^d)$ , where

$$\mathcal{S}(\mathbb{R}^d) = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{R}^d, n \in \mathbb{N}\}.$$



Racketsports dataset



A sample x with d = 6, n = 30

• Input: a sequence  $\mathsf{x} \in \mathcal{S}(\mathbb{R}^d)$ , where

$$\mathcal{S}(\mathbb{R}^d) = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{R}^d, n \in \mathbb{N}\}.$$

• Output: a label  $y \in \{1, \ldots, q\}$ .

• Input: a sequence  $\mathsf{x} \in \mathcal{S}(\mathbb{R}^d)$ , where

$$\mathcal{S}(\mathbb{R}^d) = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{R}^d, n \in \mathbb{N}\}.$$

- Output: a label  $y \in \{1, \ldots, q\}$ .
  - $\triangleright$  Racketsports dataset: q = 4

 $\rightarrow$  forehand squash, backhand squash, clear badminton, smash badminton.

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) o \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q.$$

 $\triangleright$  Signature or logsignature transform:  $S^m$ .

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

- $\triangleright$  Signature or logsignature transform:  $S^m$ .
- $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$\mathcal{W} = (\mathcal{W}^1, \ldots, \mathcal{W}^q) \colon \mathcal{S}(\mathbb{R}^e) o \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

 $\triangleright$  Signature or logsignature transform:  $S^m$ .

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathsf{y}_{i,j,k} = (\rho_{\mathrm{post}} \circ \boldsymbol{S^{m}} \circ \rho_{\mathrm{pre}} \circ \boldsymbol{W}^{i,j} \circ \phi^{k})(\mathsf{x}).$$

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \dots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

 $\triangleright$  Signature or logsignature transform:  $S^m$ .

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathbf{y}_{i,j,k} = (\rho_{\mathrm{post}} \circ \boldsymbol{S^{m}} \circ \rho_{\mathrm{pre}} \circ \boldsymbol{W}^{i,j} \circ \phi^{k})(\mathbf{x}).$$

Different goals:

▷ Sensitivity to properties of the path.
Different goals:

- ▷ Sensitivity to properties of the path.
- ▷ Dimension reduction.

Different goals:

- ▷ Sensitivity to properties of the path.
- ▷ Dimension reduction.
- $\triangleright$  Data-dependent transformation  $\rightarrow$  make the path adapted to signatures.

• Time augmentation

$$\phi(\mathsf{x}) = \big((1, x_1), \dots, (n, x_n)\big) \in \mathcal{S}(\mathbb{R}^{d+1}).$$

• Time augmentation

$$\phi(\mathsf{x}) = ig((1, x_1), \dots, (n, x_n)ig) \in \mathcal{S}(\mathbb{R}^{d+1}).$$



Sample  $x \in \mathcal{S}(\mathbb{R}^6)$ 



Augmented path  $\phi(\mathsf{x})\in\mathcal{S}(\mathbb{R}^7)$ 

• Time augmentation

$$\phi(\mathsf{x}) = ig((1, x_1), \dots, (n, x_n)ig) \in \mathcal{S}(\mathbb{R}^{d+1}).$$



▷ Sensitivity to parametrization and ensures signature uniqueness.

• Lead-lag augmentation

$$\phi(\mathsf{x}) = ((x_1, x_1), (x_2, x_1), (x_2, x_2), \dots, (x_n, x_n)) \in \mathcal{S}(\mathbb{R}^{2d}).$$

### • Lead-lag augmentation

$$\phi(\mathsf{x}) = ((x_1, x_1), (x_2, x_1), (x_2, x_2), \dots, (x_n, x_n)) \in \mathcal{S}(\mathbb{R}^{2d}).$$



Sample  $x \in \mathcal{S}(\mathbb{R}^6)$ 



Augmented path  $\phi(\mathsf{x})\in\mathcal{S}(\mathbb{R}^{12})$ 

### Lead-lag augmentation

$$\phi(\mathsf{x}) = ((x_1, x_1), (x_2, x_1), (x_2, x_2), \dots, (x_n, x_n)) \in \mathcal{S}(\mathbb{R}^{2d}).$$



▷ Captures the quadratic variation of a process.

• Basepoint augmentation

$$\phi(\mathsf{x}) = (0, x_1, \ldots, x_n) \in \mathcal{S}(\mathbb{R}^d).$$

• Basepoint augmentation

$$\phi(\mathsf{x}) = (0, x_1, \ldots, x_n) \in \mathcal{S}(\mathbb{R}^d).$$

• Invisibility-reset augmentation

$$\phi(\mathsf{x}) = \big((1, x_1), \dots, (1, x_{n-1}), (1, x_n), (0, x_n), (0, 0)\big) \in \mathcal{S}(\mathbb{R}^{d+1}).$$

• Basepoint augmentation

$$\phi(\mathsf{x}) = (0, x_1, \ldots, x_n) \in \mathcal{S}(\mathbb{R}^d).$$

Invisibility-reset augmentation

$$\phi(\mathsf{x}) = \big((1, x_1), \dots, (1, x_{n-1}), (1, x_n), (0, x_n), (0, 0)\big) \in \mathcal{S}(\mathbb{R}^{d+1}).$$

▷ Sensitivity to translations.

 $\triangleright$  For some  $e, p \in \mathbb{N}$ , an augmentation is a map

$$\phi = (\phi^1, \dots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

▷ Signature or logsignature transform: *S<sup>m</sup>*.

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathbf{y}_{i,j,k} = (\rho_{\text{post}} \circ \boldsymbol{S}^{\boldsymbol{m}} \circ \rho_{\text{pre}} \circ W^{i,j} \circ \boldsymbol{\phi}^{\boldsymbol{k}})(\mathbf{x}).$$

• Global window

$$W(\mathsf{x}) = (\mathsf{x}) \in \mathcal{S}(\mathbb{R}^e),$$





# Windows

• Sliding window

$$W(\mathsf{x}) = (\mathsf{x}_{1,\ell}, \mathsf{x}_{l+1,l+\ell}, \mathsf{x}_{2l+1,2l+\ell}, \ldots) \in \mathcal{S}(\mathcal{S}(\mathbb{R}^e)),$$



# Windows

• Expanding window

$$W(\mathsf{x}) = (\mathsf{x}_{1,\ell}, \mathsf{x}_{1,l+\ell}, \mathsf{x}_{1,2l+\ell}, \ldots) \in \mathcal{S}(\mathcal{S}(\mathbb{R}^e)).$$



• Dyadic window

$$W(\mathsf{x}) = (W^1(\mathsf{x}), \dots, W^q(\mathsf{x})) \in \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q.$$



 $\triangleright$  For some  $e, p \in \mathbb{N}$ , an augmentation is a map

$$\phi = (\phi^1, \dots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

#### $\triangleright$ Signature or logsignature transform: $S^m$ .

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathsf{y}_{i,j,k} = (
ho_{\mathrm{post}} \circ \boldsymbol{S^m} \circ 
ho_{\mathrm{pre}} \circ W^{i,j} \circ \phi^k)(\mathsf{x}).$$

• Signature transform

$$S^m(\mathsf{x}) = (1,\mathsf{X}^1,\mathsf{X}^2,\ldots,\mathsf{X}^m).$$

• Signature transform

$$S^m(\mathsf{x}) = (1, \mathsf{X}^1, \mathsf{X}^2, \dots, \mathsf{X}^m).$$

• Logsignature transform log( $S^m(x)$ ), where for any  $a \in T((\mathbb{R}^d))$ ,

$$\log(a) = \sum_{k\geq 0} \frac{(-1)^k}{k} (1-a)^{\otimes k}.$$

• Signature transform

$$S^m(\mathsf{x}) = (1, \mathsf{X}^1, \mathsf{X}^2, \dots, \mathsf{X}^m).$$

• Logsignature transform log( $S^m(x)$ ), where for any  $a \in T((\mathbb{R}^d))$ ,

$$\log(a) = \sum_{k\geq 0} \frac{(-1)^k}{k} (1-a)^{\otimes k}.$$

Same information and logsignature less dimensional but no linear approximation property.

**Table 1:** Typical dimensions of  $S^{m}(x)$  and  $\log(S^{m}(x))$ .

|              | <i>d</i> = 2         | <i>d</i> = 3          | <i>d</i> = 6             |  |
|--------------|----------------------|-----------------------|--------------------------|--|
| m = 1        | 2 / 2                | <mark>3</mark> / 3    | <mark>6</mark> / 6       |  |
| <i>m</i> = 2 | <mark>6</mark> / 3   | 12 / 6                | <mark>42</mark> / 21     |  |
| m = 5        | <mark>62</mark> / 14 | <mark>363</mark> / 80 | <mark>9330</mark> / 1960 |  |
| m = 7        | 254 / 41             | 3279 / 508            | 335922 / 49685           |  |

 $\triangleright$  For some  $e, p \in \mathbb{N}$ , an augmentation is a map

$$\phi = (\phi^1, \dots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$W = (W^1, \ldots, W^q) \colon \mathcal{S}(\mathbb{R}^e) \to \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q.$$

Signature or logsignature transform: S<sup>m</sup>.

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathbf{y}_{i,j,k} = (\rho_{\mathrm{post}} \circ \boldsymbol{S}^{\boldsymbol{m}} \circ \rho_{\mathrm{pre}} \circ \boldsymbol{W}^{i,j} \circ \phi^{k})(\mathbf{x}).$$

 $\triangleright$  For some  $e, p \in \mathbb{N}$ , an augmentation is a map

$$\phi = (\phi^1, \ldots, \phi^p) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^e)^p.$$

 $\triangleright$  For some  $q \in \mathbb{N}$ , a window is a map

$$\mathcal{W} = (\mathcal{W}^1, \dots, \mathcal{W}^q) \colon \mathcal{S}(\mathbb{R}^e) o \mathcal{S}(\mathcal{S}(\mathbb{R}^e))^q$$

 $\triangleright$  Signature or logsignature transform:  $S^m$ .

 $\triangleright$  Rescaling operation  $\rho_{\rm post}$  or  $\rho_{\rm pre}$ .

Feature set

$$\mathsf{y}_{i,j,k} = (\rho_{\mathrm{post}} \circ \boldsymbol{S}^{\boldsymbol{m}} \circ \rho_{\mathrm{pre}} \circ W^{i,j} \circ \phi^{k})(\mathsf{x}).$$

• 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline:

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth 3 + pre-signature scaling

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth 3 + pre-signature scaling

$$(S^3 \circ \rho_{\mathrm{pre}} \circ \phi)(\mathsf{x}).$$

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth 3 + pre-signature scaling

$$(S^3 \circ \rho_{\mathrm{pre}} \circ \phi)(\mathsf{x}).$$

• Vary each group of options with regards to this baseline.

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth 3 + pre-signature scaling

$$(S^3 \circ \rho_{\mathrm{pre}} \circ \phi)(\mathsf{x}).$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.

- 26 datasets: Human Activities and Postural Transitions, Speech Commands and 24 datasets from the UEA archive.
- Definition of a baseline: time augmentation + global window + signature of depth 3 + pre-signature scaling

$$(S^3 \circ \rho_{\mathrm{pre}} \circ \phi)(\mathsf{x}).$$

- Vary each group of options with regards to this baseline.
- 4 classifiers: logistic regression, random forest, GRU, CNN.
- ightarrow 9984 combinations.

• Evaluation of one combination: compute the best accuracy accross the 4 classifiers.

• Evaluation of one combination: compute the best accuracy accross the 4 classifiers.

|                           | Window |         |           |        |
|---------------------------|--------|---------|-----------|--------|
| Dataset                   | Global | Sliding | Expanding | Dyadic |
| ArticularyWordRecognition | 96.3%  | 89.3%   | 99.0%     | 99.0%  |
| AtrialFibrillation        | 46.7%  | 46.7%   | 46.7%     | 60.0%  |
| BasicMotions              | 100.0% | 100.0%  | 100.0%    | 100.0% |
| CharacterTrajectories     | 93.2%  | 94.6%   | 96.9%     | 97.1%  |
| Cricket                   | 97.2%  | 93.1%   | 97.2%     | 95.8%  |
|                           |        |         |           |        |
|                           |        |         |           |        |
|                           |        |         |           |        |

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

|                           |        | W       |           |        |
|---------------------------|--------|---------|-----------|--------|
| Dataset                   | Global | Sliding | Expanding | Dyadic |
| ArticularyWordRecognition | 96.3%  | 89.3%   | 99.0%     | 99.0%  |
| AtrialFibrillation        | 46.7%  | 46.7%   | 46.7%     | 60.0%  |
| BasicMotions              | 100.0% | 100.0%  | 100.0%    | 100.0% |
| Character Trajectories    | 93.2%  | 94.6%   | 96.9%     | 97.1%  |
| Cricket                   | 97.2%  | 93.1%   | 97.2%     | 95.8%  |
|                           |        |         |           |        |
|                           |        |         |           |        |
|                           |        |         | -         |        |

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

|                           | Window |         |           |        |
|---------------------------|--------|---------|-----------|--------|
| Dataset                   | Global | Sliding | Expanding | Dyadic |
| ArticularyWordRecognition | 3      | 4       | 1.5       | 1.5    |
| AtrialFibrillation        | 3      | 3       | 3         | 1      |
| BasicMotions              | 2      | 2       | 2         | 2      |
| CharacterTrajectories     | 4      | 3       | 2         | 1      |
| Cricket                   | 1.5    | 4       | 1.5       | 3      |
|                           |        |         |           |        |
|                           |        |         |           |        |
|                           |        | -       |           |        |

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.

|                           | Window |         |           |        |
|---------------------------|--------|---------|-----------|--------|
| Dataset                   | Global | Sliding | Expanding | Dyadic |
| ArticularyWordRecognition | 3      | 4       | 1.5       | 1.5    |
| AtrialFibrillation        | 3      | 3       | 3         | 1      |
| BasicMotions              | 2      | 2       | 2         | 2      |
| CharacterTrajectories     | 4      | 3       | 2         | 1      |
| Cricket                   | 1.5    | 4       | 1.5       | 3      |
|                           |        |         |           |        |
| •                         |        |         |           |        |
| Average ranks             | 2.83   | 3.04    | 2.17      | 1.73   |

- Evaluation of one combination: compute the best accuracy accross the 4 classifiers.
- Compute the average rank over all datasets.
- Use a critical differences plot, a global Friedman test, and pairwise Wilcoxon signed-rank tests at 5% with Holm's alpha correction.
#### ▷ Windows:



#### ▷ Invariance-removing augmentations:



#### ▷ Other augmentations:



### ▷ Signature versus logsignature transform:

|               | Signature | Logsignature |
|---------------|-----------|--------------|
| Average ranks | 1.25      | 1.75         |
| p-value       |           | 0.01         |

### ▷ Rescalings:



▷ Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.

- ▷ Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.
- ▷ The lead-lag augmentation should be considered, but we do not recommend it in general, due to its computational cost.

- ▷ Unless the problem is known to be translation or reparameterisation invariant, then use the time and basepoint augmentations.
- ▷ The lead-lag augmentation should be considered, but we do not recommend it in general, due to its computational cost.
- ▷ Use hierarchical dyadic windows, and the signature transform; both have a depth hyperparameter that must be optimised.

 $\rightarrow$  Implement this pipeline on the 30 datasets from the UEA archive and compare it to benchmark classifiers.

 $\rightarrow$  Implement this pipeline on the 30 datasets from the UEA archive and compare it to benchmark classifiers.



## Canonical signature pipeline



• Signatures are a flexible tool.

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm"  $\approx$  state-of-the-art.

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm"  $\approx$  state-of-the-art.
- Few computing resources and no domain-specific knowledge.

- Signatures are a flexible tool.
- We are able to find a canonical signature method that represents a domain-agnostic starting point.
- The combination "signature + generic algorithm"  $\approx$  state-of-the-art.
- Few computing resources and no domain-specific knowledge.
- A lot of open questions and potential applications.

# Thank you!