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Classification with deep convolutional networks:
r € RY

classes concentrate

and separate

channels channels

L;: spatial convolutions and linear combination of channels

Exceptional results for classification of images, sounds, language,

regressions in physics, signal and tmage generation... : not understood

e Issues of robustness and validation in applications:
transport, medecine, sciences...

e Opportunity for new maths
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Linear classifier: gy = arg, max(®(x), 8,) + ay

Covariance .,

= Py E(®(z) /y)

V =Nect{By}y

nf—

e () must have separated class means p, in V

N - V. Papyan
Fisher Ratio: Trace(Xgt % cura’ corapst | ~q X.Y. Han
( W B) training D. Donoho

with X = Ave, (u, — 1) (py — )* and Xy = Ave, X,

What mechanism leads to this concentration/separation ?



—|\ ﬁ; : Overview =y

I- Frame separation and contraction in 2-layer nets

II- Concentration and Separation in Statistical Physics:
P . Y.

- Models of non-Gaussian processes

Turbulences:

-
N
. ' - ‘
-

- Wavelet separation and ReLU: scales, orientations and‘phases

II- Image classification by deep concentration and separation:
- Deep mult1 scale scattering from priors without learning
- Learning along channels only



q -Tight Frame Separation & Contraction=z
) John Zarka, Florentin Guth

P
S =C pF : 2 layer network
p L E '®; >\ with no bias
>
CP(x) = ((2(2).8,))

b(x) =pFx = (p((x,wn>) with p > d.

n<p
Tight frame: F'F = Id separates along each w,

r € R?

contraction: |p(a) — p(a’)| < la — d'
= [|®(x) — ®(z')|| < ||z — 2|| : contraction

Separation and contractions with threshold ¢ > O:
Soft-Thresh. p(a) = sign(a) max(|a| — t,0) shrinks amplitude
7 Stein Shrinking estimation” for noise removal
RelLu p(a) = max(a — t,0) shrinks amplitude
separates sign/phases
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ALk Separation and Contraction -

e et x be a Gaussian mixture of zero mean x, with covariance >,

A ReLu p(a) = max(a,0) can separate the means:

(2m) Y2 B(pFz,) = diag(F B, FT)Y2 = B(|(zs, wn)[?)}/2

o A soft-thresholding reduces variances and nearly preserves the mean:

if us = E(xs) has a sparse representation in F':

L((Ts, Wn))

| | ,

Donoho € Johnstone



ﬁ\ Eﬁs Tight Frame Contraction z:hd:

o F 0 Filters of F' =L
> > for CIFAR i :
r ¢ R? - ’
e SGD optimisation P (x) x [S,%ftx %%;
Error 7.4% 1.4% 1.4%
MNIST S / 7 9 Fisher | 20 60 60

| — Error | 60% 39% 28%
CIFAR M .;I e Fisher 7 12 15
e A soft-thresholding p can reduce within class variance and

preserve class means p,, it F'z 1s sufficiently sparse. (Donoho
Johnstone)

A ReLu p also modifies class means.

Do we need to learn the tight frame F' 7
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%:_ -lI- Statistical Physics !n‘:

e A one versus all classification problem: discriminate typical
realisations from all other types of signals.

e Characterized through concentration of sufficient statistics
which separate from all others with high probability.



Vector of statistics S(x): observal

ble

Concentration: Probp(HS(w) —E,(S(x))

|>e)%0

d — o0

= a realisation z( satisfies S(zg) ~ E,(S(x)) with high proba.

r Typical realizations \

\_ /

4 C)
g concentration
—3 O
O \_ J

Microcanonial ensemble: 2c = {x : ||S(z) — S(xp)|| < €}

Maximum entropy model p supported in

(). is uniform.

Sufficient model if €2 ~ ().: what statistics S 7



Symmetry prior: p(x) is translation invariant

S(x) = (d_l Z r(u) z(u — ,7.)) empirical covariance

+ concentrates by spatial averaging

Maximum entropy model p asymptotically Gaussian: how good 7

along w

sparsity p({z, w))

PCA basis: Fourier = Harmonic Analysis

(Gaussien Caz (Gaussien




e No reproduction of “coherent structures” because the statistics do
not enforce dependancies across frequencies

e Need to capture “patterns” with sparse representations.
e Scale separations with wavelets

e Role of ReLU to capture scale dependancies



e Wayvelet filter ¢ (u

= + 17 = complex

rotated and dilated: ¥y (u) = 2727 (27 reu)

Fourier

6 imaginary parts

ENEEEEEE
A 0 S S Y
HEEESNN INEEESNN
ViZiZ==SNN [VIZESSNIN
ZZ=SNY 17 7ZZ=SNN\

real parts

e Wayvelet tight frame:
Wa(u,\) = @ (u) _2ouer

@\(w) = 7

e Not correlated across ”channels” if x is stationary:

41(W:1:(u, A) Wa(u, )\’)) ~0 if X#£N



Q'J Wavelet Filter Bank Algorithm

N Y=
LR

Tight frame

é V.

| BN

Sparse but not correlated
because of sign variations

27 |
Scale’

How to capture dependance across scales, angles, phases channels 7



Multiscale Correlation Graph

Correlations across scales/orientations/phases A = (27,0), «
created by a ReLu p(a) = max(a,0) which separate phases

S(x) = (32 ol * o) pla > thar )

Concentration by spatial averaging: dimension O(log” d)




Correlations across scales/orientations/phases A = (27, 0), «

S(x) = (32 plex than) plax Yo 3))

Oé’,)\l

Maximum entropy models conditioned by S(xzg)



q\- *=.Generation by Gradient Descent .

Concentration: Probp(HS(aﬁ) —E,(S(x))| > e) — 0

d — 00
r Typical realizatio \

4 C )
g concentration
— O
0 \_ J

\_ J

Microcanonial ensemble: Qe = {x : ||S(x) — S(zo)|| < €}

Maximum entropy model p supported in ), is uniform.

Generation by sampling p: SGD on ||S(x) — S(xg)|| from white noise

Transport of measure which converges (J. Bruna)

Not maximum entropy but same unitary invariants as S



S. Zhang,E. Allys, T. Marchand, S. Ho, F. Levrier, F. Boulanger

Astrophysics Ising-critical
NG 'i - . =- :.:j-.;,' &

P N
"N A

: b0
S(z¢) has 210° empirical covariances

Sampled from S(xg) with SGD algorithm



q\- = Generation of Cosmological Models .

E. Allys, T. Marchand, J.F. Cardoso, F. Villaescusa, S. Ho, S. Mallat

Generation of matter density fields from rectified wavelet covariances:

Original x

Max-entropy generation
b) o

3 . & V A
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e Reproduces high order moments

400 600 800

1000
Mpc/h

e Accurate regression of 6 cosmological parameters from S(x)

e Applications in finance : simulations of markets R. Morel



- |ll - Image Classification

e A deep network progressively separates and concentrates

e Can we do it from prior without learning ?

e If not, what needs to be learned ?



Frame separation: p Fy, /\\ Fg F=1d

o ¥ q ~

pF,, separates phases and orientations without contraction.
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Frame separation: p F, / D

o000 Oooo Ooood 0000 OO0 |:||:||:||:|>
TxGs plp(m o nn) ) * ¢ channels

Depth = Scale
d= pW; .. pWsypW; : separation

® = (pF,)’ : iterated frame separations
Scatters along progressively more channels

A convolution tree: no channel connections no learning



|E' Scattering Deformation Stability

EN
$*¢2J
ij: P(x*wM)*¢2J :IOWQ,OW1CE

p(P(x x hx,) *x Pxy) * P20

Ao, ...

Lipschitz continuity to deformations D,xz(u) = x(u — 7(u))

Lemma : |[Wy, D. ||| = [|[WpD; — D Wy || < C||VT|/«

Theorem: there exists C' > 0 such that
lim |[S;yD,x — Syz|| < C||VT||s ||Z]|

J— 00



Scat-Net; : J layers
T—| plp(zxipn) x ) x oy > PT)— | C 7

: supervised
no learning learning
< >
channels 4—Q'J
Errors:

MNIST: 282 Scattering Deep Nets.
10 classes J=3 05%' 05%
: 2 :
Cllgjﬁafséeém J=4  23% ‘ResNet-18: 8%

ResNet-50:7.6%

EAleXNet—7: 20%
52 Y% 1ResNet-18: 11%

J =6 iRes—Net 50: 7%

What is learned ?

ImageNet: 2282

10° classes

1 million training




. _ One Concentrated Scattering

N\ A
\\ Il":\:{t-u.._—_..u-ﬁ
John Zarka, Florentin Guth

Frame soft-thresholding along scattering channels:

C,C! = Id

spatial wavelet

orthog. 1x1 conv.

Fl'F =1Id
tight frame
soft-threshold across channels

Py gives
sparse model

C

—>

scattering concentration
—| Scat-Net ; > () >F1TpF1 >
X P (x)
/ >‘.—. >‘.—. I
I 1200 256 256
e SGD optimisation | ®(z) | Scat. |1CoScat | ResNet-18
Error 27% 18% 8%
CIFAR Fisher 22 30
ImageNet | Frror | 60% 30% 11%
Top o Fisher 2.9 3.4

y

o



Itiscale Concentrated Scatterin

Ny

Wavelet frame contraction: p F,, spatial conv, shrinks sign

Concentrated frame contraction: FTpF C'; shrinks amplitude
1X1 conv. along channels

.
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: wreases channels

Channel 1 ,OF 1 C 1 1  reduces channels

contraction, concentration };/ \‘_‘ ’7/ \ 64
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Scale, angle, phase separation: p F.
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Concentrated Scattering

FlTpFlCl

>

3

FQTIOFQCQ

64 channels

_

J. Zarka, F. Guth

F}pFJCQ

128 channels

e Network without learning bias

N\

..0l2 ...

e Learning 1x1 convolutions across scattering channels

e SGD optimisation

(I)(.CE) 1CoScat [JCoScat| ResNet-18
Error 18% 7.8% 8%
CIFAR Fisher 30 70
Depth 5 8 18
Error 30% 11% 11%
ImTageN56t Fisher 3.4 7.2
Op Depth 7 12 18

What properties of the C; what geometry 7



<\-, F;-_, . Conclusion :,:

e Deep network separate and concentrate: what mechanism ?

e Links with statistical physics and large deviations

 Means are separated by separating phases/signs of frame coifs
e Variance can be reduced with tight frame shrinking

e Spatial filtering with wavelet frame 1s sufficient to separate
means across scales, angles and phases.

e State of the art by learning contractions along channels

 What geometry in the scattering domain ?
e Control of Fisher concentration ratios 1s an open math. problem.



