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     Deep Convolutional Networks

x 2 Rd
�(x)

ỹ

• Surprisingly good generalisation properties: not understood

C max⇢L1

⇢Lj

transport, medecine, sciences...
• Issues of robustness and validation in applications:

• Opportunity for new maths and science theories

Classification with deep convolutional networks:

⇢(a) = max(a� b, 0)

and separate
classes concentrate

Lj : spatial convolutions and linear combination of channels

Exceptional results for classification of images, sounds, language,

regressions in physics, signal and image generation...



 Linear Classification From 

�y

•

•

•
•

•

•

�(x)

ỹ = argy maxh�(x),�yi+ ↵y

V = V ect{�y}y

Linear classifier:

• �(x) must have separated class means µy = PV E(�(x)/y)

Fisher Ratio: Trace(⌃�1
W ⌃B)

with ⌃B = Avey (µy � µ)(µy � µ)T and ⌃W = Avey ⌃y.

µy = PV E(�(x) / y)
Covariance ⌃y

Neural collapse 1
training

What mechanism leads to this concentration/separation ?

D. Donoho

V. Papyan
X.Y. Han

in V



           Overview

I- Frame separation and contraction in 2-layer nets 

II- Concentration and Separation in Statistical Physics:  
- Models of non-Gaussian processes 

– Wavelet separation and ReLU:  scales, orientations and phases 

II- Image classification by deep concentration and separation: 
– Deep multi scale scattering from priors without learning 
– Learning along channels only

observation
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Figure 9: Top: standard 2nd order scattering in (3), Middle: Simoncelli’s

Representation defined in (4), bottom: Fourier Roto-translation defined in

(6).
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Turbulences:



  Tight Frame Separation & Contraction

x 2 Rd

C

C�(x) =
⇣
h�(x),�yi

⌘

y

S = C ⇢F : 2 layer network

) k�(x)� �(x0)k  kx� x0k : contraction

contraction: |⇢(a)� ⇢(a0)|  |a� a0|
Tight frame: FTF = Id separates along each wn

for noise removal
Soft-Thresh. ⇢(a) = sign(a) max(|a|� t, 0) shrinks amplitude
Separation and contractions with threshold t � 0:

⇢F with no bias

”Stein shrinking estimation”

John Zarka, Florentin Guth�

�(x) = ⇢Fx =
⇣
⇢(hx,wni

⌘

np
with p � d.

ReLu ⇢(a) = max(a� t, 0) shrinks amplitude
separates sign/phases



 Separation and Contraction

• Let x be a Gaussian mixture of zero mean xs with covariance ⌃s

A ReLu ⇢(a) = max(a, 0) can separate the means:

• A soft-thresholding reduces variances and nearly preserves the mean:

if µs = E(xs) has a sparse representation in F :

n

E(hxs, wni)

(2⇡)1/2 E(⇢Fxs) = diag(F ⌃sF
T )1/2 = E(|hxs, wni|2)1/2

n

hxs, wniSoft-threshold shrinking:

Donoho & Johnstone

t



      Tight Frame Contraction

x 2 Rd

C
S = C ⇢F

⇢F

• A soft-thresholding ⇢ can reduce within class variance and
(Donoho
Johnstone)A ReLu ⇢ also modifies class means.

preserve class means µy if Fx is su�ciently sparse.

Filters of F
for CIFAR

�(x)

MNIST

CIFAR

x

7.4%

60%

Error

Error

Fisher 20

7Fisher

• SGD optimisation

1.4%

60

15

⇢Fx
ReLu

28%

Soft

1.4%

60

⇢Fx

12

39%

Do we need to learn the tight frame F ?

�



 II- Statistical Physics

• Characterize a random process and generate samples 

• A one versus all classification problem: discriminate typical 
realisations from all other types of signals. 

• Characterized through concentration of sufficient statistics 
which separate from all others with high probability. 
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Figure 9: Top: standard 2nd order scattering in (3), Middle: Simoncelli’s

Representation defined in (4), bottom: Fourier Roto-translation defined in

(6).
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Turbulences:



Microcanonial ensemble:

⌦✏

Maximum entropy model p̃ supported in ⌦✏ is uniform.

      One Versus All: Statistical Physics

x0

Typical realizations

concentration

⌦✏ = {x : kS(x)� S(x0)k  ✏}

⌦

Concentration:
d ! 1

Probp
⇣
kS(x)� Ep(S(x))k > ✏

⌘
�! 0

Vector of statistics S(x): observable

S

Su�cient model if ⌦ ⇡ ⌦✏: what statistics S ?

) a realisation x0 satisfies S(x0) ⇡ Ep(S(x)) with high proba.



Stat. for Gaussian Stationary Models

w

PCA basis: Fourier ) Harmonic Analysis

p(x) p̃(x)

observation
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Figure 9: Top: standard 2nd order scattering in (3), Middle: Simoncelli’s

Representation defined in (4), bottom: Fourier Roto-translation defined in

(6).
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: empirical covariance

sparsity p(hx,wi)
p̃(hx,wi)

along w

concentrates by spatial averaging
S(x) =

⇣
d�1

X

u

x(u)x(u� ⌧)
⌘

⌧

Symmetry prior: p(x) is translation invariant

: how good ?Maximum entropy model p̃ asymptotically Gaussian:



  Beyond Gaussian Models

• No reproduction of “coherent structures” because the statistics do 
not enforce dependancies across frequencies 

• Need to capture “patterns” with sparse representations. 

• Scale separations with wavelets 

• Role of ReLU to capture scale dependancies



rotated and dilated:

 Scale separation with Wavelets

• Wavelet filter  (u):

�1

�2

 ̂2j ,✓(!)

+ i

real parts imaginary parts✓ Fourier

\x ?  �(!) = x̂(!)  ̂�(!)

 �(u) = 2�2j  (2�jr✓u)

Fourier

E
⇣
Wx(u,�)Wx(u,�0)

⌘
⇡ 0 if � 6= �0

• Not correlated across ”channels” if x is stationary:

complex

Wx(u,�) = x ?  �(u)

• Wavelet tight frame:



20

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

2J
Scale

  Wavelet Filter Bank Algorithm
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Sparse
Dependant across scales
but not correlated

How to capture dependance across scales, angles, phases channels ?

Fw

Fw

Filters separation Fw FT
wF = Id

Tight frame

because of sign variations



    Multiscale Correlation Graph

�1

�2b �(!1,!2)

Concentration by spatial averaging: dimension O(log2 d)

Correlations across scales/orientations/phases � = (2j , ✓),↵

S(x) =
⇣X

u

⇢(x ?  ↵,�) ⇢(x ?  ↵0,�0)
⌘

↵,�
↵0,�0

created by a ReLu ⇢(a) = max(a, 0) which separate phases



        Models of Stationary Processes
Sixin Zhang

Ising-critical

Maximum entropy models conditioned by S(x0)

x0

S(x) =
⇣X

u

⇢(x ?  ↵,�) ⇢(x ?  ↵0,�0)
⌘

↵,�
↵0,�0

Correlations across scales/orientations/phases � = (2j , ✓),↵



Microcanonial ensemble:

⌦✏

Maximum entropy model p̃ supported in ⌦✏ is uniform.

     Generation by Gradient Descent

concentration

⌦✏ = {x : kS(x)� S(x0)k  ✏}

Concentration:
d ! 1

Probp
⇣
kS(x)� Ep(S(x))k > ✏

⌘
�! 0

S

Generation by sampling p̃: SGD on kS(x)� S(x0)k from white noise

(J. Bruna)Transport of measure which converges

Not maximum entropy but same unitary invariants as S

Typical realizations

⌦ x0



         Sampling from Max Entropy Model

d = 6104
S. Zhang,

Ising-critical

x0

x

E. Allys, T. Marchand, S. Ho, F. Levrier, F. Boulanger

Astrophysics

Sampled from S(x0) with SGD algorithm
S(x0) has 2 103 empirical covariances



Generation of Cosmological Models
E. Allys, T. Marchand, J.F. Cardoso, F. Villaescusa, S. Ho, S. Mallat

9

FIG. 5: Comparisons of the logarithm of the matter density field log(⇢) in Quijote simulation maps and in our statistically
synthesized maps, showing how well the syntheses reproduce the statistical properties of log(⇢) in the Quijote maps. The error
bars correspond to the realization-per-realization dispersion. a) A map of log(⇢) from the Quijote simulations. b) A map of log(⇢)
synthesized based on WPH statistics of a sample of 30 Quijote maps (see Sec. IV A). c)–h) Statistics for log(⇢) estimated using

300 maps from the Quijote simulations (orange lines) and 300 syntheses (dashed blue lines). c) Power spectrum, d) standard
deviation of the power spectrum, e) pixel value PDF on a linear scale, f) bispectrum in the flattened triangle configuration,

B(k/2, k/2, k), g) bispectrum in the squeezed triangle configuration, B(k, k, k3), for k3 ⌧ 1, and h) pixel value PDF on a
logarithmic scale.

�(⇢) to match those estimated from Quijote simulations. How-
ever, something slightly di↵erent is implemented in practice so
some details are in order. Regarding the target WPH moments,
they are collected in a vector �target obtained by averaging (a
sample version of) Eq. (6) over a set of Nlearn = 30 Quijote
maps with periodic boundary conditions. Each Quijote map
has a surface area of 1 (Gpc/h)2 and is sampled on a grid of
256⇥256 pixels. We found empirically that a set of Nlearn = 30
maps was large enough to estimate the WPH coe�cients up to
J = 6 with an accuracy su�cient for our purposes. We could

have used a larger training set but we restrained ourselves to
Nlearn = 30 in order to illustrate that our method performs well
with a small number of examples.

Regarding the synthesis process itself, maps are not pro-
duced individually but in batches of Nbatch maps. We start from
Nbatch maps ⇢1, . . . , ⇢Nbatch of size 256 ⇥ 256 obtained as inde-
pendent Gaussian white noise realizations. Then, their pixel

Original x0 Max-entropy generation

• Reproduces high order moments

Generation of matter density fields from rectified wavelet covariances:

• Accurate regression of 6 cosmological parameters from S(x0)

• Applications in finance : simulations of markets R. Morel



 III -  Image Classification

• Can we do it from prior without learning ?

• If not, what needs to be learned ?

• A deep network progressively separates and concentrates



    Wavelet Scattering Network
x

FT
wF = IdFrame separation: ⇢Fw

⇢Fw separates phases and orientations without contraction.



    Wavelet Scattering Network

⇢W1⇢W2...⇢WJ

x

x ? �J

20

2J

Scale

21

A convolution tree: no channel connections

: iterated frame separations

⇢(x ?  �1)

⇢(⇢(x ?  �1) ?  �2) ? �J

no learning

� =
Depth =

channels

⇢Fw

⇢Fw

⇢Fw

� = (⇢Fw)
J

Scatters along progressively more channels

FT
wF = IdFrame separation: ⇢Fw

: separation



   Scattering  Deformation Stability

Theorem: For appropriate wavelets, a scattering is

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

SJx =

0

BB@

x ? �2J
⇢(x ?  �1) ? �2J

⇢(⇢(x ?  �1) ?  �2) ? �2J
...

1

CCA

�1,�2,...

= . . . ⇢W2 ⇢W1 x

there exists C > 0 such that

Lipschitz continuity to deformations D⌧x(u) = x(u� ⌧(u))

Lemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1



       Image Classification 

x
Scat-NetJ

2Jchannels

: J layers

ỹ

supervised
learning

C�(x)

Scattering Deep Nets.
10 classes

Errors:

0.5 %

no learning

0.5 %J = 3
MNIST: 282

What is learned ?

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

103 classes

52 %
AlexNet-7: 20%
ResNet-18: 11%ImageNet: 2282

1 million training

Res-Net 50: 7%J = 6

⇢(⇢(x ?  �) ?  �0) ? �J

CIFAR: 322
10 classes

J = 4 8%ResNet-18:
ResNet-50:7.6%

23%



    One Concentrated Scattering

ỹC2x
Scat-NetJ

�(x)

scattering
spatial wavelet

1200 256 256

orthog. 1x1 conv. tight frame
soft-threshold

C1

C1C
T
1 = Id

FT
1 ⇢F1

concentration

FT
1 F1 = Id

�(x)

CIFAR

60% 30%

Error

Error

Fisher

Fisher
ImageNet

Scat.

27% 18%

22 30

ResNet-18

8%

11%

2.9 3.4Top 5

1CoScat• SGD optimisation

John Zarka, Florentin Guth
Frame soft-thresholding along scattering channels:

sparse model
across channels

F1 gives



x

 Multiscale Concentrated Scattering
spatial conv.

increases channels

reduces channels

512

64
Channel

128

⇢Fw
FT
2 ⇢F2C2

C

ỹ

512

⇢Fw

FT
J ⇢FJCJ

Wavelet frame contraction: ⇢Fw

along channels

Scale, angle, phase separation: ⇢Fw

contraction, concentration

Concentrated frame contraction: FT
j ⇢Fj Cj

FT
1 ⇢F1C1

, shrinks sign

1x1 conv.
shrinks amplitude

FT
1 ⇢F1C1

FT
2 ⇢F2C2

FT
J ⇢FJCJ



x 2 Rd

J. Zarka, F. Guth

C

3 128 ... 512 ...

• Learning 1x1 convolutions across scattering channels

        Concentrated Scattering

�(x)

CIFAR

30%

Error

Error

Fisher

Fisher
ImageNet

18%
30

ResNet-18

8%

11%

Depth 5 8 18

Depth 7 12 18
3.4

Top 5

1CoScat

7.8%

11%

JCoScat

ỹmax

• Network without learning bias

• SGD optimisation

64

FT
1 ⇢F1C1

⇢Fw ⇢Fw ⇢Fw ⇢Fw

FT
2 ⇢F2C2 FT

J ⇢FJC2

70

7.2

What properties of the Cj what geometry ?



             Conclusion

• Deep network separate and concentrate: what mechanism ? 
• Links with statistical physics and large deviations 

• Means are separated by separating phases/signs of frame coifs 
• Variance can be reduced with tight frame shrinking 
• Spatial filtering with wavelet frame is sufficient to separate 

means across scales, angles and phases. 
• State of the art by learning contractions along channels 

• What geometry in the scattering domain ? 
• Control of Fisher concentration ratios is an open math. problem. 
          
 


