

 L_j : spatial convolutions and linear combination of channels Exceptional results for classification of *images, sounds, language, regressions in physics, signal and image generation...* : not understood

- Issues of robustness and validation in applications: transport, medecine, sciences...
- Opportunity for new maths

• $\Phi(x)$ must have separated class means μ_y in VFisher Ratio: $\operatorname{Trace}(\Sigma_W^{-1}\Sigma_B) \xrightarrow{\text{Neural collapse}}_{\text{training}} \infty \qquad \begin{array}{c} V. \ Papyan \\ X. Y. \ Han \\ D. \ Donoho \end{array}$ with $\Sigma_B = Ave_y (\mu_y - \overline{\mu})(\mu_y - \overline{\mu})^T$ and $\Sigma_W = Ave_y \Sigma_y$.

What mechanism leads to this concentration/separation ?

- I- Frame separation and contraction in $\[1mm]$
- II- Concentration and Separation in Sta
 - Models of non-Gaussian processes

Turbulences:

Overview

- Wavelet separation and ReLU: scales, orientations and phases
- **II- Image classification by deep concentration and separation:**
 - Deep multi scale scattering from priors without learning
 - Learning along channels only

Tight Frame Separation & Contraction-

John Zarka, Florentin Guth

 $S = C \rho F : 2 \text{ layer network}$ with no bias

$$C\Phi(x) = \left(\langle \Phi(x), \beta_y \rangle \right)_y$$

$$\Phi(x) = \rho F x = \left(\rho(\langle x, w_n \rangle\right)_{n \le p} \text{ with } p \ge d.$$

Tight frame: $F^T F = Id$ separates along each w_n contraction: $|\rho(a) - \rho(a')| \le |a - a'|$ $\Rightarrow ||\Phi(x) - \Phi(x')|| \le ||x - x'||$: contraction

Φ

ho F

 $x \in \mathbb{R}^d$

Separation and contractions with threshold $t \ge 0$: Soft-Thresh. $\rho(a) = \operatorname{sign}(a) \max(|a| - t, 0)$ shrinks amplitude "Stein shrinking estimation" for noise removal

ReLu
$$\rho(a) = \max(a - t, 0)$$
 shrinks amplitude
separates sign/phases

Separation and Contraction

• Let x be a Gaussian mixture of zero mean x_s with covariance Σ_s A ReLu $\rho(a) = \max(a, 0)$ can separate the means:

 $(2\pi)^{1/2} \mathbb{E}(\rho F x_s) = \operatorname{diag}(F \Sigma_s F^T)^{1/2} = \mathbb{E}(|\langle x_s, w_n \rangle|^2)^{1/2}$

• A soft-thresholding reduces variances and nearly preserves the mean: if $\mu_s = \mathbb{E}(x_s)$ has a sparse representation in F:

Tight Frame Contraction

• SGD optimisation		$\Phi(x)$	x	$\left \begin{array}{c} \operatorname{Soft} \\ \rho Fx \end{array} \right $	$\begin{vmatrix} \operatorname{ReLu} \\ \rho Fx \end{vmatrix}$
MNIST	8179	Error Fisher	$\begin{array}{c} 7.4\% \\ 20 \end{array}$	$\frac{1.4\%}{60}$	1.4% 60
CIFAR		Error Fisher	60% 7	$\frac{39\%}{12}$	28% 15

• A soft-thresholding ρ can reduce within class variance and preserve class means μ_y if Fx is sufficiently sparse. (Donoho A ReLu ρ also modifies class means. Johnstone)

Do we need to learn the tight frame F?

• Characterize a random

Turbulences:

- A *one versus all classification problem*: discriminate typical realisations from all other types of signals.
- Characterized through **concentration** of sufficient statistics which **separate** from all others with high probability.

One Versus All: Statistical Physics

Vector of statistics S(x): observable

Concentration: $\operatorname{Prob}_{p}\left(\|S(x) - \mathbb{E}_{p}(S(x))\| > \epsilon\right) \xrightarrow[d \to \infty]{} 0$

 \Rightarrow a realisation x_0 satisfies $S(x_0) \approx \mathbb{E}_p(S(x))$ with high proba.

Microcanonial ensemble: $\Omega_{\epsilon} = \{x : \|S(x) - S(x_0)\| \le \epsilon\}$

Maximum entropy model \tilde{p} supported in Ω_{ϵ} is uniform. Sufficient model if $\Omega \approx \Omega_{\epsilon}$: what statistics S?

- No reproduction of "coherent structures" because the statistics do not enforce dependancies across frequencies
- Need to capture "patterns" with sparse representations.
- Scale separations with wavelets
- Role of ReLU to capture scale dependancies

Scale separation with Wavelets

• Wavelet filter $\psi(u)$: = +i = complex

rotated and dilated: $\psi_{\lambda}(u) = 2^{-2j} \psi(2^{-j}r_{\theta}u)$

• Wavelet tight frame:

• Not correlated across "channels" if x is stationary:

 $\mathbb{E}\Big(Wx(u,\lambda)\,Wx(u,\lambda')\Big)\approx 0 \quad \text{if} \quad \lambda\neq\lambda'$

How to capture dependance across scales, angles, phases channels ?

Multiscale Correlation Graph

Correlations across scales/orientations/phases $\lambda = (2^j, \theta), \alpha$ created by a ReLu $\rho(a) = \max(a, 0)$ which separate phases

$$S(x) = \left(\sum_{u} \rho(x \star \psi_{\alpha,\lambda}) \rho(x \star \psi_{\alpha',\lambda'})\right)_{\alpha',\lambda'}$$

Concentration by spatial averaging: dimension $O(\log^2 d)$

Correlations across scales/orientations/phases $\lambda = (2^j, \theta), \alpha$

$$S(x) = \left(\sum_{u} \rho(x \star \psi_{\alpha,\lambda}) \rho(x \star \psi_{\alpha',\lambda'})\right)_{\alpha',\lambda'}$$

Maximum entropy models conditioned by $S(x_0)$

Microcanonial ensemble: $\Omega_{\epsilon} = \{x : \|S(x) - S(x_0)\| \le \epsilon\}$ Maximum entropy model \tilde{p} supported in Ω_{ϵ} is uniform.

Generation by sampling \tilde{p} : SGD on $||S(x) - S(x_0)||$ from white noise

Transport of measure which converges (J. Bruna)Not maximum entropy but same unitary invariants as S

S. Zhang, E. Allys, T. Marchand, S. Ho, F. Levrier, F. Boulanger $d = 6 \, 10^4$ Astrophysics Ising-critical

 $S(x_0)$ has 2.10³ empirical covariances Sampled from $S(x_0)$ with SGD algorithm Generation of Cosmological Models

E. Allys, T. Marchand, J.F. Cardoso, F. Villaescusa, S. Ho, S. Mallat Generation of matter density fields from rectified wavelet covariances:

- Reproduces high order moments
- Accurate regression of 6 cosmological parameters from $S(x_0)$
- Applications in finance : simulations of markets R. Morel

- A deep network progressively separates and concentrates
 - Can we do it from prior without learning ?

• If not, what needs to be learned ?

Wavelet Scattering NetworkFrame separation: ρF_w rrrr

 ρF_w separates phases and orientations without contraction.

Wavelet Scattering Network

Scatters along progressively more channels A convolution tree: no channel connections no learning

Scattering Deformation Stability

$$S_J x = \begin{pmatrix} x \star \phi_{2^J} \\ \rho(x \star \psi_{\lambda_1}) \star \phi_{2^J} \\ \rho(\rho(x \star \psi_{\lambda_1}) \star \psi_{\lambda_2}) \star \phi_{2^J} \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \dots} = \dots \rho W_2 \rho W_1 x$$

Lipschitz continuity to deformations $D_{\tau}x(u) = x(u - \tau(u))$

Lemma: $||[W_k, D_{\tau}]|| = ||W_k D_{\tau} - D_{\tau} W_k|| \le C ||\nabla \tau||_{\infty}$

Theorem: there exists C > 0 such that $\lim_{J \to \infty} \|S_J D_\tau x - S_J x\| \le C \|\nabla \tau\|_\infty \|x\|$

One Concentrated Scattering

Solution John Zarka, Florentin Guth Frame soft-thresholding along scattering channels:

• SGD optimisation		$\Phi(x)$	Scat.	1CoScat	ResNet-18
	CIFAR	Error Fisher	27% 22	18% 30	8%
	ImageNet Top 5	Error Fisher	60% 2.9	$\frac{30\%}{3.4}$	11%

- Network without learning bias
- Learning 1x1 convolutions across scattering channels

• SGD optimisation		$\Phi(x)$	1CoScat	JCoScat	ResNet-18
	CIFAR	Error Fisher Depth	18% 30 5	7.8% 70 8	8% 18
	ImageNet Top 5	Error Fisher Depth	${30\% \atop {3.4} \over 7}$	$11\% \\ 7.2 \\ 12$	11% 18

What properties of the C_j what geometry ?

Conclusion

- <u>. 196</u>
- Deep network separate and concentrate: what mechanism ?
- Links with statistical physics and large deviations
- Means are separated by separating phases/signs of frame coifs
- Variance can be reduced with tight frame shrinking
- Spatial filtering with wavelet frame is sufficient to separate means across scales, angles and phases.
- State of the art by learning contractions along channels
- What geometry in the scattering domain ?
- Control of *Fisher concentration ratios* is an open math. problem.