
On the Happy Marriage
of Kernel Methods and Deep Learning

Julien Mairal

Inria Grenoble

Julien Mairal From kernel methods to deep learning 1/107

Context of supervised learning

The goal is to learn a prediction function f : X → Y given labeled training data
(xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...

Julien Mairal From kernel methods to deep learning 2/107

Kernel Methods 1/2

In the context of supervised learning with labels in R,

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

Φ : X → H and f(x) = 〈Φ(x), f〉H.

X •
•

•
• HΦ

• •
•

•

x Φ(x)

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...

Julien Mairal From kernel methods to deep learning 3/107

Kernel Methods 2/2

In the context of supervised learning with labels in R,

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

f(x) = 〈Φ(x), f〉H but Φ(x) may be very high- or infinite-dimensional.

then, only manipulate inner-products K(x, x′) = 〈Φ(x),Φ(x′)〉H (kernel trick).

Alternatively, compute a finite-dimensional approximate embedding f(x) ≈ w>Ψ(x);

regularize with ‖.‖H (encourages smoothness);

If you want to know more (24 hours course)
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/

master2017.pdf

Julien Mairal From kernel methods to deep learning 4/107

http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf

Kernel Methods 2/2

In the context of supervised learning with labels in R,

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

f(x) = 〈Φ(x), f〉H but Φ(x) may be very high- or infinite-dimensional.

then, only manipulate inner-products K(x, x′) = 〈Φ(x),Φ(x′)〉H (kernel trick).

Alternatively, compute a finite-dimensional approximate embedding f(x) ≈ w>Ψ(x);

regularize with ‖.‖H (encourages smoothness);

If you want to know more (24 hours course)
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/

master2017.pdf

Julien Mairal From kernel methods to deep learning 4/107

http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf

Relation with deep learning?

A functional space viewpoint: kernels for deep networks

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g., norms);

Linearization f(x) = 〈f,Φ(x)〉 decouples learning f from data representation Φ(x).

What is an appropriate functional space?

Deep learning for kernels

Scalable learning with finite-dimensional embeddings;

Deep networks with a geometric interpretation and regularization principles;

End-to-end learning with kernels?

How do we proceed?

Julien Mairal From kernel methods to deep learning 5/107

Relation with deep learning?

A functional space viewpoint: kernels for deep networks

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g., norms);

Linearization f(x) = 〈f,Φ(x)〉 decouples learning f from data representation Φ(x).

What is an appropriate functional space?

Deep learning for kernels

Scalable learning with finite-dimensional embeddings;

Deep networks with a geometric interpretation and regularization principles;

End-to-end learning with kernels?

How do we proceed?

Julien Mairal From kernel methods to deep learning 5/107

Relation with deep learning?

A functional space viewpoint: kernels for deep networks

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g., norms);

Linearization f(x) = 〈f,Φ(x)〉 decouples learning f from data representation Φ(x).

What is an appropriate functional space?

Deep learning for kernels

Scalable learning with finite-dimensional embeddings;

Deep networks with a geometric interpretation and regularization principles;

End-to-end learning with kernels?

How do we proceed?

Julien Mairal From kernel methods to deep learning 5/107

Relation with deep learning?

A functional space viewpoint: kernels for deep networks

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g., norms);

Linearization f(x) = 〈f,Φ(x)〉 decouples learning f from data representation Φ(x).

What is an appropriate functional space?

Deep learning for kernels

Scalable learning with finite-dimensional embeddings;

Deep networks with a geometric interpretation and regularization principles;

End-to-end learning with kernels?

How do we proceed?

Julien Mairal From kernel methods to deep learning 5/107

Graph Modeling

D. Chen, L. Jacob and J. Mairal. Convolutional Kernel Networks for Graph-Structured
Data. International Conference on Machine Learning (ICML). 2020.

Julien Mairal From kernel methods to deep learning 6/107

Graph-structured data is everywhere

(a) molecules (b) protein regulation

(c) social networks (d) chemical pathways

Julien Mairal From kernel methods to deep learning 7/107

Learning graph representations

State-of-the-art models for representing graphs:

Deep learning for graphs: graph neural networks (GNNs);

Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

Hybrid models attempt to bridge both worlds: graph neural tangent kernels (GNTK).

Our model:

A new type of multilayer graph kernel: more expressive than WL kernels;

Learning easy-to-regularize and scalable unsupervised graph representations;

Learning supervised graph representations like GNNs.

Julien Mairal From kernel methods to deep learning 8/107

Learning graph representations

State-of-the-art models for representing graphs:

Deep learning for graphs: graph neural networks (GNNs);

Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

Hybrid models attempt to bridge both worlds: graph neural tangent kernels (GNTK).

Our model:

A new type of multilayer graph kernel: more expressive than WL kernels;

Learning easy-to-regularize and scalable unsupervised graph representations;

Learning supervised graph representations like GNNs.

Julien Mairal From kernel methods to deep learning 8/107

Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

A graph is defined as a triplet (V, E , a);

V and E correspond to the set of vertices and edges;

a : V → Rd is a function assigning attributes to each node.

Julien Mairal From kernel methods to deep learning 9/107

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

Φ(G) :=
∑

u∈V
ϕbase(`G(u)) where ϕbase embeds some local patterns `G(u) to H.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]

Julien Mairal From kernel methods to deep learning 10/107

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.
A large class of graph kernel mappings can be written in the form

K(G,G′) =

〈∑

u∈V
ϕbase(`G(u))

︸ ︷︷ ︸
Φ(G)

,
∑

u′∈V ′

ϕbase(`G′(u′))

︸ ︷︷ ︸
Φ(G′)

〉
.

Julien Mairal From kernel methods to deep learning 10/107

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

K(G,G′) =
∑

u∈V

∑

u′∈V ′

〈ϕbase(`G(u)), ϕbase(`G′(u′))〉.

Julien Mairal From kernel methods to deep learning 10/107

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

K(G,G′) =
∑

u∈V

∑

u′∈V ′

κbase(`G(u), `G′(u′)).

Julien Mairal From kernel methods to deep learning 10/107

Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.

Julien Mairal From kernel methods to deep learning 11/107

Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Pk(G, u) := paths of length k from node u in G. The k-path mapping is

ϕpath(u) :=
∑

p∈Pk(G,u)

δa(p) =⇒ Φ(G) =
∑

u∈V

∑

p∈Pk(G,u)

δa(p).

a(p): concatenated attributes in p; δ: the Dirac function;

Φ(G) can be interpreted as a histogram of paths occurrences;

Julien Mairal From kernel methods to deep learning 11/107

A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk(G,u)

δa(p)(·)

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete attributes;

δ is not differentiable, which cannot be “optimized” with back-propagation.

Julien Mairal From kernel methods to deep learning 12/107

A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk(G,u)

δa(p)(·)

=⇒
∑

p∈Pk(G,u)

e−
α
2
‖a(p)−·‖2 .

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete attributes;

δ is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping

interpreted as the sum of Gaussians centered at each path from u.

Julien Mairal From kernel methods to deep learning 12/107

One-layer GCKN: a closer look at the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk(G,u)

e−
α1
2
‖a(p)−·‖2 =

∑

p∈Pk(G,u)

ϕRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:

path extraction: enumerating all Pk(G, u);
kernel mapping: evaluating Gaussian embedding ϕRBF of path features;
path aggregation: aggregating the path embeddings.

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1).

Julien Mairal From kernel methods to deep learning 13/107

One-layer GCKN: a closer look at the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk(G,u)

e−
α1
2
‖a(p)−·‖2 =

∑

p∈Pk(G,u)

ϕRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:

path extraction: enumerating all Pk(G, u);
kernel mapping: evaluating Gaussian embedding ϕRBF of path features;
path aggregation: aggregating the path embeddings.

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1).

Julien Mairal From kernel methods to deep learning 13/107

Construction of one-layer GCKN

u

a(u) ∈ Rd

(V , E , a : V → Rd)

path extraction

kernel mapping
path aggregation

u

u

ϕ1(u) ∈ H1

u u u

p1 p2 p3

ϕRBF(a(p1))
ϕRBF(a(p2))

ϕRBF(a(p3))

kernel mapping

H1

path aggregation

ϕ1(u) := ϕRBF(a(p1)) + ϕRBF(a(p2)) + ϕRBF(a(p3))

(V , E , ϕ1 : V → H1)

Julien Mairal From kernel methods to deep learning 14/107

From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

Final graph representation at layer j, Φ(G) =
∑

u∈V ϕj(u).

Why is the multilayer model interesting ?

applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
applying more times may capture higher-order structures?
Long paths cannot be enumerated due to computational complexity, yet multilayer model
can capture long-range substructures.

Julien Mairal From kernel methods to deep learning 15/107

From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

Final graph representation at layer j, Φ(G) =
∑

u∈V ϕj(u).

Why is the multilayer model interesting ?

applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
applying more times may capture higher-order structures?
Long paths cannot be enumerated due to computational complexity, yet multilayer model
can capture long-range substructures.

Julien Mairal From kernel methods to deep learning 15/107

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk(G,u)

ϕRBF(a(p)).

ϕRBF(a(p)) = e−
α
2
‖a(p)−·‖2 ∈ H is infinite-dimensional;

Nyström provides a finite-dimensional approximation Ψ(a(p)) by orthogonally
projecting ϕRBF(a(p)) onto some finite-dimensional subspace:

Span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b, Williams and Seeger, 2001]

Julien Mairal From kernel methods to deep learning 16/107

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk(G,u)

ϕRBF(a(p)).

ϕRBF(a(p)) = e−
α
2
‖a(p)−·‖2 ∈ H is infinite-dimensional;

Nyström provides a finite-dimensional approximation Ψ(a(p)) by orthogonally
projecting ϕRBF(a(p)) onto some finite-dimensional subspace:

Span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b, Williams and Seeger, 2001]

Julien Mairal From kernel methods to deep learning 16/107

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk(G,u)

ϕRBF(a(p)).

ϕRBF(a(p)) = e−
α
2
‖a(p)−·‖2 ∈ H is infinite-dimensional;

Nyström provides a finite-dimensional approximation Ψ(a(p)) by orthogonally
projecting ϕRBF(a(p)) onto some finite-dimensional subspace:

Span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b, Williams and Seeger, 2001]

Julien Mairal From kernel methods to deep learning 16/107

Comparison of GCKN and GNN

GCKN vs. GNN

fGCKN(G) =
∑

u∈G
ψk(u) fGNN(G) =

∑

u∈G
fk(u)

ψk(u) =
∑

p∈Pk(G,u)

κ(Z>Z)−
1
2κ(Z>ψk−1(p)) fk(u) =

∑

v∈N (u)

ReLU(Z>fk−1(v))

local path aggregation neighborhood aggregation

projection in a known RKHS ?

supervised and unsupervised supervised

Julien Mairal From kernel methods to deep learning 17/107

Experiments on graphs with discrete attributes
MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WL subtree
kernel.

GCKN-path already
outperforms the baselines.

Increasing number of layers
brings larger improvement.

Supervised learning does not
improve performance, but leads
to more compact
representations.

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]

Julien Mairal From kernel methods to deep learning 18/107

Experiments on graphs with continuous attributes
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WWL kernel.

Results similar to discrete case.

Path features seem presumably
predictive enough.

[Du et al., 2019, Togninalli et al., 2019]

Julien Mairal From kernel methods to deep learning 19/107

Model interpretation for Mutagenicity prediction

Idea: find the minimal connected component that preserves the prediction.

GCKN

Original

[Ying et al., 2019]

Julien Mairal From kernel methods to deep learning 20/107

Take-home messages

GCKN is a multilayer kernel for graphs based on paths, which allows to control the
trade-off between computation and expressiveness.

Its graph representations can be learned in both supervised and unsupervised
fashions. Unsupervised models are easy-to-regularize and scalable.

A straightforward model interpretation is also provided.

Our code is freely available at https://github.com/claying/GCKN.

Future (on-going) work

working with real people dealing with real data (protein folding prediction).

Julien Mairal From kernel methods to deep learning 21/107

https://github.com/claying/GCKN

Take-home messages

GCKN is a multilayer kernel for graphs based on paths, which allows to control the
trade-off between computation and expressiveness.

Its graph representations can be learned in both supervised and unsupervised
fashions. Unsupervised models are easy-to-regularize and scalable.

A straightforward model interpretation is also provided.

Our code is freely available at https://github.com/claying/GCKN.

Future (on-going) work

working with real people dealing with real data (protein folding prediction).

Julien Mairal From kernel methods to deep learning 21/107

https://github.com/claying/GCKN

Biological Sequence Modeling

D. Chen, L. Jacob and J. Mairal. Recurrent Kernel Networks. Adv. Neural Information
Processing Systems (NeurIPS). 2019.

D. Chen, L. Jacob and J. Mairal. Biological Sequence Modeling with Convolutional
Kernel Networks. Bioinformatics. 2019.

Julien Mairal From kernel methods to deep learning 22/107

Sequence modeling as a supervised learning problem

Biological sequences x1, . . . xn ∈ X and their associated labels y1, . . . , yn.

Goal: learning a predictive and interpretable function f : X → R

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

.

How do we define the functional space F?

Julien Mairal From kernel methods to deep learning 23/107

Sequence modeling as a supervised learning problem

Biological sequences x1, . . . xn ∈ X and their associated labels y1, . . . , yn.

Goal: learning a predictive and interpretable function f : X → R

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

.

How do we define the functional space F?

Julien Mairal From kernel methods to deep learning 23/107

String kernels

A classical approach for modeling biological sequences over alphabet A relies on string
kernels.

K(x, x′) =
∑

u∈Ak
δu(x)δu(x′)

= 〈Φ(x),Φ(x′)〉

,

where u is a k-mer over an alphabet A and δu(x) can be:

the number of occurrences of u in x: spectrum kernel [Leslie et al., 2002];

the number of occurrences of u in x up to m mismatches: mismatch kernel [Leslie
and Kuang, 2004];

the number of occurrences of u in x allowing gaps, with a weight decaying
exponentially with the number of gaps : substring kernel [Lodhi et al., 2002].

What is Φ(x)?

It can be interpreted as a histogram of pattern occurences.

Julien Mairal From kernel methods to deep learning 24/107

String kernels

A classical approach for modeling biological sequences over alphabet A relies on string
kernels.

K(x, x′) =
∑

u∈Ak
δu(x)δu(x′) = 〈Φ(x),Φ(x′)〉,

where u is a k-mer over an alphabet A and δu(x) can be:

the number of occurrences of u in x: spectrum kernel [Leslie et al., 2002];

the number of occurrences of u in x up to m mismatches: mismatch kernel [Leslie
and Kuang, 2004];

the number of occurrences of u in x allowing gaps, with a weight decaying
exponentially with the number of gaps : substring kernel [Lodhi et al., 2002].

What is Φ(x)?

It can be interpreted as a histogram of pattern occurences.

Julien Mairal From kernel methods to deep learning 24/107

Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel [Chen et al., 2019a, Morrow et al.,

2017]

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0(x[i:i+k]︸ ︷︷ ︸
one k-mer

, x′[j:j+k]).

Use one-hot encoding

x[i:i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

Julien Mairal From kernel methods to deep learning 25/107

Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel [Chen et al., 2019a, Morrow et al.,

2017]

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

〈ϕ0(x[i:i+k]︸ ︷︷ ︸
one k-mer

), ϕ0(x′[j:j+k])〉.

Use one-hot encoding

x[i:i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

Julien Mairal From kernel methods to deep learning 25/107

Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel [Chen et al., 2019a, Morrow et al.,

2017]

KCKN(x, x′) =

〈|x|−k+1∑

i=1

ϕ0(x[i:i+k])

︸ ︷︷ ︸
Φ(x)

,

|x′|−k+1∑

j=1

ϕ0(x′[j:j+k])

︸ ︷︷ ︸
Φ(x′)

〉
.

Use one-hot encoding

x[i:i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

Julien Mairal From kernel methods to deep learning 25/107

Scalable Approximation of Kernel Mapping (with more details this time)

K0(u, u′) = 〈ϕ0(u), ϕ0(u′)〉H0 ≈ 〈ψ0(u), ψ0(u′)〉Rq .
Nyström provides a finite-dimensional approximation ψ0(u) in Rq by orthogonally
projecting ϕ0(u) onto some finite-dimensional subspace:

E0 = Span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}.

Hilbert space H0

E0

ϕ0(u)

ϕ0(u
′)

Case of dot-product kernels K0(u, u′) = κ(〈u, u′〉):

ψ0(u) = κ(Z>Z)−1/2κ(Z>u).

linear operation - pointwise nonlinearity - linear operation (subject to interpretation)

Ex: κ(β) = eβ−1, polynomial, inverse polynomial, arc-cosine kernels....

Julien Mairal From kernel methods to deep learning 26/107

Scalable Approximation of Kernel Mapping (with more details this time)

K0(u, u′) = 〈ϕ0(u), ϕ0(u′)〉H0 ≈ 〈ψ0(u), ψ0(u′)〉Rq .
Nyström provides a finite-dimensional approximation ψ0(u) in Rq by orthogonally
projecting ϕ0(u) onto some finite-dimensional subspace:

E0 = Span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}.

General case:

ψ0(u) = [K0(zi, zj)]
−1/2
ij [K0(z1, u), . . . ,K0(zq, u)]T = K0(Z,Z)−1/2K0(Z, u).

Case of dot-product kernels K0(u, u′) = κ(〈u, u′〉):

ψ0(u) = κ(Z>Z)−1/2κ(Z>u).

linear operation - pointwise nonlinearity - linear operation (subject to interpretation)

Ex: κ(β) = eβ−1, polynomial, inverse polynomial, arc-cosine kernels....

Julien Mairal From kernel methods to deep learning 26/107

Scalable Approximation of Kernel Mapping (with more details this time)

K0(u, u′) = 〈ϕ0(u), ϕ0(u′)〉H0 ≈ 〈ψ0(u), ψ0(u′)〉Rq .

Nyström provides a finite-dimensional approximation ψ0(u) in Rq by orthogonally
projecting ϕ0(u) onto some finite-dimensional subspace:

E0 = Span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}.

Case of dot-product kernels K0(u, u′) = κ(〈u, u′〉):

ψ0(u) = κ(Z>Z)−1/2κ(Z>u).

linear operation - pointwise nonlinearity - linear operation (subject to interpretation)

Ex: κ(β) = eβ−1, polynomial, inverse polynomial, arc-cosine kernels....

Julien Mairal From kernel methods to deep learning 26/107

Single-Layer CKN for sequence modeling

x ∈ X
x(u) ∈ APi(x) k-mer

ψ0(Pi(x)) ∈ Rq

kernel mapping approximation

ψ0(Pi(x)) = K
− 1

2

ZZKZ(Pi(x))

global pooling

Ψ(x) ∈ Rq y
prediction layer

〈w,Ψ(x)〉

Julien Mairal From kernel methods to deep learning 27/107

Multilayer CKN for sequence modeling

x ∈ X
x(u) ∈ APi(x) k-mer

ψ0(Pi(x)) ∈ Rq

kernel mapping approximation

ψ0(Pi(x)) = K
− 1

2

ZZKZ(Pi(x))

global pooling

Ψ(x) ∈ Rq y
prediction layer

〈w,Ψ(x)〉

Pi(x) k-mer

ψ0(Pi(x)) ∈ Rq0

x1

pooling

x1(w) ∈ Rq0Pi(x
1)

ψ1(Pi(x
1)) ∈ Rq

Ψ(x) ∈ Rq

prediction layer

Julien Mairal From kernel methods to deep learning 28/107

How to learn the anchor points Z?

with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 k-mers from the previous layer computed on
a sequence database;

perform a K-means algorithm to learn the anchor points;

compute the projection matrix κ(Z>Z)−1/2 (case of a dot-product kernel).

with supervision?

by using back-propagation on a supervised loss function;

all it requires is differentiating κ(Z>Z)−1/2 which requires an eigenvalue decomposition;

use the unsupervised learning procedure as initialization.

Julien Mairal From kernel methods to deep learning 29/107

How to learn the anchor points Z?

with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 k-mers from the previous layer computed on
a sequence database;

perform a K-means algorithm to learn the anchor points;

compute the projection matrix κ(Z>Z)−1/2 (case of a dot-product kernel).

with supervision?

by using back-propagation on a supervised loss function;

all it requires is differentiating κ(Z>Z)−1/2 which requires an eigenvalue decomposition;

use the unsupervised learning procedure as initialization.

Julien Mairal From kernel methods to deep learning 29/107

From k-mers to gapped k-mers

k-mers with gaps

For a sequence x = x1 . . . xn ∈ X of length n and a sequence of ordered indices
i = (i1, . . . , ik) in I(k, n), we define a k-substring as:

x[i] = xi1xi2 . . . xik .

We introduce the quantity

gaps(i) = number of gaps in index sequence.

Example: x = ABRACADABRA

i = (4, 5, 8, 9, 11) x[i] = RADAR gaps(i) = 3.

Julien Mairal From kernel methods to deep learning 30/107

Recurrent kernel networks

Comparing all the k-mers between a pair of sequences (single layer models)

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0

(
x[i:i+k], x

′
[j:j+k]

)
.

The kernel mapping is Φ(x) =
∑|x|−k+1

i=1 ϕ0(x[i:i+k]).

This is a differentiable relaxation of the substring kernel.

Julien Mairal From kernel methods to deep learning 31/107

Recurrent kernel networks

Comparing all the gapped k-mers between a pair of sequences (single layer models)

KRKN(x, x′) =
∑

i∈I(k,|x|)

∑

j∈I(k,|x′|)
λgaps(i)λgaps(j)K0

(
x[i], x

′
[j]

)
.

The kernel mapping is Φ(x) =
∑

i∈I(k,|x|) λ
gaps(i)ϕ0(x[i]).

This is a differentiable relaxation of the substring kernel.

But enumerating all possible substrings is costly...

Julien Mairal From kernel methods to deep learning 31/107

Approximation and recursive computation of RKN

Approximate feature map of RKN kernel

The approximate feature map of KRKN via Nyström approximation is

Ψ(x) =
∑

i∈I(k,t)
λgaps(i)ψ0(x[i]) ∈ Rq,

where, as usual with a dot-product kernel, ψ0(x[i]) = κ(Z>Z)−1/2κ(Z>x[i]).

The sum can be computed by using dynamic programming [Lodhi et al., 2002],

which leads to a particular recurrent neural network [see Lei et al., 2017].

Julien Mairal From kernel methods to deep learning 32/107

A feature map for the single-layer RKN

When K0 is a Gaussian kernel, the feature map of RKN is a mixture of Gaussians centered
at x[i], weighted by the corresponding penalization λgaps(i).

k-mer kernel embedding

one 4-mer of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ0(x[i])

one-layer RKN

x

i1 i2 λ i3 λ ik

all embedded
k-mers

λgap(i)ϕ0(x[i])

pooling

∑
i λ

gap(i)ϕ0(x[i])

Figure: Example of KRKN for k = 4

Julien Mairal From kernel methods to deep learning 33/107

Results

Protein fold classification on SCOP 2.06 [Hou et al., 2017] (using more informative
sequence features including PSSM, secondary structure and solvent accessibility)

Method]Params Accuracy Level-stratified accuracy (top1/top5)
top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83 43.78/67.03
CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (128 filters) 211k 77.82 92.89 76.91/93.13 78.56/92.98 60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Note: More experiments with statistical tests have been conducted in our paper.

[Hou et al., 2017, Chen et al., 2019a]

Julien Mairal From kernel methods to deep learning 34/107

Logos, by finding pre-image of each filter

FOXA_disc1

CKN

0

1

2
b
it
s

1

T
2

A
G

3

T
4

G
T

5

G
T

6

G
A

7

C

8

C
A
T

9

C
T

1
0

T
A

0

1

2

b
it
s

1 2 3

T
4

A
G

5

T
6

T
7

G
T

8

G
A

9

C
1
0

A
T
C

1
1

C
T

1
2

A
T

CNN

0

1

2

b
it
s

T

3 4 5

G

C

A

T

6

T

C

A
G

7

G

C

A
T

8

A

C

G
T

9

C

A

G
T

1
0

C

T

G
A

1
1

G

A

T

C

1
2

C

A

T

GATA_disc1

CKN

0

1

2

b
it
s

1

A

G

2

A

G
C

3

C
T
A

4

G

5

A

6

T

7

T
A

8

C

A

9

C

G

1
0

A
C
G

0

1

2

b
it
s

1

C
G
A

2

C
G

3

C
T
A

4

G

5

A

6

T

7

A

8

A

9

G

1
0

C
A
G

1
1

1
2

A

C
T

CNN

0

1

2

b
it
s

1

A

C

T

G

2

C

T

G
A

3

C

G

A
T

4

G

C

T
A

5

T

G

C

A

6

T

A

C
G

7

C

A
G

8

T

A

9

T

Julien Mairal From kernel methods to deep learning 35/107

Results

Protein fold recognition on SCOP 1.67 (widely used in the past)

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359
Mismatch 0.814 0.467
LA-kernel – – 0.834 0.504
LSTM 0.830 0.566 – –
CKN 0.837 0.572 0.866 0.621

RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629
RKN (unsup) mean 0.805 0.504 0.833 0.570

[Liao and Noble, 2003, Leslie et al., 2003, Vert et al., 2004, Hochreiter et al., 2007, Chen et al., 2019a]

Julien Mairal From kernel methods to deep learning 36/107

Take-home messages

CKN and RKNs are multilayer kernels for sequences, achieving state-of-the-art results
for biological sequence modeling (see other tasks in papers).

RKN is able to model gaps with a recurrent neural network structure.

These models can be used without supervision, providing effective, but
high-dimensional embeddings.

With supervision, models trained with backpropagation are much more compact.

For biological sequences, best results were obtained with a single layer.

Our code in Pytorch is freely available at
https://gitlab.inria.fr/dchen/CKN-seq

https://github.com/claying/RKN

Julien Mairal From kernel methods to deep learning 37/107

https://gitlab.inria.fr/dchen/CKN-seq
https://github.com/claying/RKN

Take-home messages

CKN and RKNs are multilayer kernels for sequences, achieving state-of-the-art results
for biological sequence modeling (see other tasks in papers).

RKN is able to model gaps with a recurrent neural network structure.

These models can be used without supervision, providing effective, but
high-dimensional embeddings.

With supervision, models trained with backpropagation are much more compact.

For biological sequences, best results were obtained with a single layer.

Our code in Pytorch is freely available at
https://gitlab.inria.fr/dchen/CKN-seq

https://github.com/claying/RKN

Julien Mairal From kernel methods to deep learning 37/107

https://gitlab.inria.fr/dchen/CKN-seq
https://github.com/claying/RKN

Image Modeling

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks.
Adv. Neural Information Processing Systems (NIPS), 2016.

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel Networks.
Adv. Neural Information Processing Systems (NIPS). 2014.

Julien Mairal From kernel methods to deep learning 38/107

Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 39/107

Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMk

Pkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 39/107

Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = Ak

MkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 39/107

Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 39/107

Construction of the RKHS for continuous signals

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk

Julien Mairal From kernel methods to deep learning 40/107

Construction of the RKHS for continuous signals

Kernel mapping for patches

We use a homogeneous dot-product kernel for image patches

K(z, z′) = ‖z‖‖z′‖κ
(〈z, z′〉
‖z‖‖z′‖

)
.

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.

Julien Mairal From kernel methods to deep learning 41/107

Construction of the RKHS for continuous signals

Kernel mapping for patches

We use a homogeneous dot-product kernel for image patches

K(z, z′) = ‖z‖‖z′‖κ
(〈z, z′〉
‖z‖‖z′‖

)
.

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.

Julien Mairal From kernel methods to deep learning 41/107

Convolutional Kernel Networks in practice

I0

z

z′

kernel trick

projection on F1

M1

ψ1(z)

ψ1(z
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(z)

ϕ1(z
′)

Learning mechanism of CKNs between layers 0 and 1.

Julien Mairal From kernel methods to deep learning 42/107

Convolutional Kernel Networks in Practice

What is the difference with a CNN?

Given a patch x, a CNN computes ψCNN (x) = σ(Z>x) (+batch norm?)

Given a patch x, a CKN computes ψCKN (x) = ‖x‖κ(Z>Z)−1/2κ(Z>x/‖x‖).

Consequences

we have a geometric interpretation in terms of subspace learning.

it provides unsupervised learning mechanisms (kernel approximation with Nyström).

supervised learning is still feasible (backpropagating through κ(Z>Z)−1/2 is fun).

the kernel interpretation provides regularization mechanisms.

kernel representations can possibly be used in other contexts (statistical testing? kernel
PCA? CCA? K-means?).

Julien Mairal From kernel methods to deep learning 43/107

Convolutional Kernel Networks in Practice

What is the difference with a CNN?

Given a patch x, a CNN computes ψCNN (x) = σ(Z>x) (+batch norm?)

Given a patch x, a CKN computes ψCKN (x) = ‖x‖κ(Z>Z)−1/2κ(Z>x/‖x‖).

Consequences

we have a geometric interpretation in terms of subspace learning.

it provides unsupervised learning mechanisms (kernel approximation with Nyström).

supervised learning is still feasible (backpropagating through κ(Z>Z)−1/2 is fun).

the kernel interpretation provides regularization mechanisms.

kernel representations can possibly be used in other contexts (statistical testing? kernel
PCA? CCA? K-means?).

Julien Mairal From kernel methods to deep learning 43/107

Experiments

Briefly state-of-the-art for image retrieval [Paulin et al., 2015];

Briefly state-of-the-art for image super-resolution [Mairal, 2016a];

Interesting findings from CIFAR-10

about 92% with supervision, mild data augmentation, 14 layers, 256 anchor points per
layers (no need for batch norm, vanilla SGD+momentum).

about 86% with no supervision for a two-layer model with a huge number of anchor
points (1024-16384) and no data augmentation.

with no supervision, the performance monotonically increases with the dimension
(better kernel approximation).

computing the exact kernel does not make sense in practice for computational reasons,
but it is feasible with lots of CPUs; it yields about 90% with three layers (unpublished,
by A. Bietti), which is consistent with [Shankar et al., 2020].

Julien Mairal From kernel methods to deep learning 44/107

Take-home messages

unsupervised representations are shallow and high-dimensional;

supervised representations may be deep and compact;

Our code is freely available at
https://gitlab.inria.fr/mairal/ckn-cudnn-matlab.

and https://github.com/claying/CKN-Pytorch-image.

Open

how to close the gap between the approximate embedding and the exact kernel?

Julien Mairal From kernel methods to deep learning 45/107

https://gitlab.inria.fr/mairal/ckn-cudnn-matlab
https://github.com/claying/CKN-Pytorch-image

Take-home messages

unsupervised representations are shallow and high-dimensional;

supervised representations may be deep and compact;

Our code is freely available at
https://gitlab.inria.fr/mairal/ckn-cudnn-matlab.

and https://github.com/claying/CKN-Pytorch-image.

Open

how to close the gap between the approximate embedding and the exact kernel?

Julien Mairal From kernel methods to deep learning 45/107

https://gitlab.inria.fr/mairal/ckn-cudnn-matlab
https://github.com/claying/CKN-Pytorch-image

Theory for Deep Learning Models

A. Bietti and J. Mairal. On the Inductive Bias of Neural Tangent Kernels. Adv. Neural
Information Processing Systems (NeurIPS). 2019.

A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of
Deep Convolutional Representations. Journal of Machine Learning Research (JMLR).
2019.

Julien Mairal From kernel methods to deep learning 46/107

Kernels for deep models: deep kernel machines

Hierarchical kernels [Cho and Saul, 2009]

Kernels can be constructed hierarchically

K(x, x′) = 〈Φ(x),Φ(x′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K(x, x′) = κ2(〈ϕ1(x), ϕ1(x′)〉) = κ2(κ1(x>x′))

Julien Mairal From kernel methods to deep learning 47/107

Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images [Mairal et al., 2014, Mairal, 2016b]

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)

Julien Mairal From kernel methods to deep learning 47/107

Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m∑

i=1

viσ(w>i x), m→∞

Random feature kernels [RF, Neal, 1996, Rahimi and Recht, 2007]

θ = (vi)i, fixed random weights wi ∼ N(0, I)

KRF (x, x′) = Ew∼N(0,I)[σ(w>x)σ(w>x′)]

Neural tangent kernels [NTK, Jacot et al., 2018]

θ = (vi, wi)i, initialization θ0 ∼ N(0, I)
Lazy training [Chizat et al., 2019]: θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.
Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK(x, x′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x′)〉

Julien Mairal From kernel methods to deep learning 48/107

Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m∑

i=1

viσ(w>i x), m→∞

Random feature kernels [RF, Neal, 1996, Rahimi and Recht, 2007]

θ = (vi)i, fixed random weights wi ∼ N(0, I)

KRF (x, x′) = Ew∼N(0,I)[σ(w>x)σ(w>x′)]

Neural tangent kernels [NTK, Jacot et al., 2018]

θ = (vi, wi)i, initialization θ0 ∼ N(0, I)
Lazy training [Chizat et al., 2019]: θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK(x, x′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x′)〉

Julien Mairal From kernel methods to deep learning 48/107

Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m∑

i=1

viσ(w>i x), m→∞

Random feature kernels [RF, Neal, 1996, Rahimi and Recht, 2007]

θ = (vi)i, fixed random weights wi ∼ N(0, I)

KRF (x, x′) = Ew∼N(0,I)[σ(w>x)σ(w>x′)]

Neural tangent kernels [NTK, Jacot et al., 2018]

θ = (vi, wi)i, initialization θ0 ∼ N(0, I)
Lazy training [Chizat et al., 2019]: θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.
Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK(x, x′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x′)〉
Julien Mairal From kernel methods to deep learning 48/107

Other relations between kernels and deep learning

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al., 2011, Anselmi et al.,
2015];

deep Gaussian processes [Damianou and Lawrence, 2013].

multilayer PCA [Schölkopf et al., 1998].

old kernels for images [Scholkopf, 1997], related to one-layer CKN.

RBF networks [Broomhead and Lowe, 1988].

. . .

Julien Mairal From kernel methods to deep learning 49/107

Objectives

Deep convolutional signal representations

Are they stable to deformations?

How can we achieve invariance to transformation groups?

Do they preserve signal information?

Learning aspects

Building a functional space for CNNs (or similar objects).

Deriving a measure of model complexity.
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Julien Mairal From kernel methods to deep learning 50/107

Focus on convolutional kernel networks (CKNs)

What is the relation?

it is possible to design functional spaces H for deep neural networks [Mairal, 2016b].

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

we call the construction “convolutional kernel networks” (in short, replace
u 7→ σ(〈a, u〉) by a kernel mapping u 7→ ϕk(u).

Why do we care?

Φ(x) is related to the network architecture and is independent of training data. Is
it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Julien Mairal From kernel methods to deep learning 51/107

Focus on convolutional kernel networks (CKNs)

What is the relation?

it is possible to design functional spaces H for deep neural networks [Mairal, 2016b].

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

we call the construction “convolutional kernel networks” (in short, replace
u 7→ σ(〈a, u〉) by a kernel mapping u 7→ ϕk(u).

Why do we care?

Φ(x) is related to the network architecture and is independent of training data. Is
it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Julien Mairal From kernel methods to deep learning 51/107

Summary of the results from Bietti and Mairal [2019a]

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

Signal preservation of the multi-layer kernel mapping Φ.

Stability to deformations and non-expansiveness for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ‖.‖H to control stability and generalization of a
predictive model f .

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Julien Mairal From kernel methods to deep learning 52/107

Summary of the results from Bietti and Mairal [2019a]

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

Signal preservation of the multi-layer kernel mapping Φ.

Stability to deformations and non-expansiveness for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ‖.‖H to control stability and generalization of a
predictive model f .

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Julien Mairal From kernel methods to deep learning 52/107

Summary of the results from Bietti and Mairal [2019a]

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

Signal preservation of the multi-layer kernel mapping Φ.

Stability to deformations and non-expansiveness for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ‖.‖H to control stability and generalization of a
predictive model f .

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Julien Mairal From kernel methods to deep learning 52/107

Smooth homogeneous activations functions

z 7→ ReLU(w>z) =⇒ z 7→ ‖z‖σ(w>z/‖z‖).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2

Julien Mairal From kernel methods to deep learning 53/107

Recap: Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 54/107

Recap: Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMk

Pkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 54/107

Recap: Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = Ak

MkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 54/107

Recap: Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.

Julien Mairal From kernel methods to deep learning 54/107

Construction of the RKHS for continuous signals

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk

Julien Mairal From kernel methods to deep learning 55/107

Construction of the RKHS for continuous signals

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.

Julien Mairal From kernel methods to deep learning 56/107

Construction of the RKHS for continuous signals

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.

Julien Mairal From kernel methods to deep learning 56/107

Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u+ v))v∈Sk ∈ Pk = HSkk–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

Julien Mairal From kernel methods to deep learning 57/107

Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u+ v))v∈Sk ∈ Pk = HSkk–1

Sk: patch shape, e.g. box

Julien Mairal From kernel methods to deep learning 57/107

Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

Julien Mairal From kernel methods to deep learning 58/107

Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk
Kernel mapping of homogeneous dot-product kernels:

Kk(z, z
′) = ‖z‖‖z′‖κk

(〈z, z′〉
‖z‖‖z′‖

)
= 〈ϕk(z), ϕk(z′)〉.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1

Examples

κexp(〈z, z′〉) = e〈z,z
′〉−1 (Gaussian kernel on the sphere)

κinv-poly(〈z, z′〉) = 1
2−〈z,z′〉

Julien Mairal From kernel methods to deep learning 58/107

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Julien Mairal From kernel methods to deep learning 59/107

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk(u) := σ−dk h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling

“Preserves information” when subsampling ≤ patch size

Julien Mairal From kernel methods to deep learning 59/107

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk(u) := σ−dk h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling

“Preserves information” when subsampling ≤ patch size

Julien Mairal From kernel methods to deep learning 59/107

Recap: Pk, Mk, Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk

Julien Mairal From kernel methods to deep learning 60/107

Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

 Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform [Mallat, 2012, Bruna and Mallat, 2013]

Julien Mairal From kernel methods to deep learning 61/107

Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Definition of stability

Representation Φ(·) is stable [Mallat, 2012] if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation

C2 → 0: translation invariance

Julien Mairal From kernel methods to deep learning 61/107

Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = 〈f,Φ(x)〉

|f(x)− f(x′)| ≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H

‖f‖H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:

Convolutional kernel networks [CKNs, Mairal, 2016b] with efficient approximations

Extends to neural tangent kernels [NTKs, Jacot et al., 2018] of infinitely wide
CNNs [Bietti and Mairal, 2019b]

Julien Mairal From kernel methods to deep learning 62/107

Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = 〈f,Φ(x)〉

|f(x)− f(x′)| ≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H

‖f‖H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:

Convolutional kernel networks [CKNs, Mairal, 2016b] with efficient approximations

Extends to neural tangent kernels [NTKs, Jacot et al., 2018] of infinitely wide
CNNs [Bietti and Mairal, 2019b]

Julien Mairal From kernel methods to deep learning 62/107

Recap: multilayer construction

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk, σk grow exponentially in practice (i.e., fixed with subsampling).

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x, with x the original continuous signal, A0 local
integrator with scale σ0 (anti-aliasing).

Final kernel

KCKN (x, x′) = 〈Φ(x),Φ(x′)〉L2(Ω) =

∫

Ω
〈xn(u), x′n(u)〉du

Julien Mairal From kernel methods to deep learning 63/107

Recap: multilayer construction

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk, σk grow exponentially in practice (i.e., fixed with subsampling).

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x, with x the original continuous signal, A0 local
integrator with scale σ0 (anti-aliasing).

Final kernel

KCKN (x, x′) = 〈Φ(x),Φ(x′)〉L2(Ω) =

∫

Ω
〈xn(u), x′n(u)〉du

Julien Mairal From kernel methods to deep learning 63/107

Recap: multilayer construction

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk, σk grow exponentially in practice (i.e., fixed with subsampling).

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x, with x the original continuous signal, A0 local
integrator with scale σ0 (anti-aliasing).

Final kernel

KCKN (x, x′) = 〈Φ(x),Φ(x′)〉L2(Ω) =

∫

Ω
〈xn(u), x′n(u)〉du

Julien Mairal From kernel methods to deep learning 63/107

Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞ (operator norm).

Scale σn of the last layer controls translation invariance.

Julien Mairal From kernel methods to deep learning 64/107

Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞ (operator norm).

Scale σn of the last layer controls translation invariance.

Julien Mairal From kernel methods to deep learning 64/107

Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞ (operator norm).

Scale σn of the last layer controls translation invariance.

Julien Mairal From kernel methods to deep learning 64/107

Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LcAn −An‖ ≤ C2
σn
c (operator norm).

Scale σn of the last layer controls translation invariance.

Julien Mairal From kernel methods to deep learning 64/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖AkLτ − LτAk‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖[Ak, Lτ]‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖[Ak, Lτ]‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖[Ak, Lτ]‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖[Ak, Lτ]‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).

Julien Mairal From kernel methods to deep learning 65/107

Stability to deformations

Theorem (Stability of CKN [Bietti and Mairal, 2019a])

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(
Cβ (n+ 1) ‖∇τ‖∞ +

C

σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ , PkAk–1]

Extend result by Mallat [2012] for controlling ‖[Lτ , A]‖
Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Julien Mairal From kernel methods to deep learning 66/107

Stability to deformations

Theorem (Stability of CKN [Bietti and Mairal, 2019a])

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(
Cβ (n+ 1) ‖∇τ‖∞ +

C

σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ , PkAk–1]

Extend result by Mallat [2012] for controlling ‖[Lτ , A]‖
Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Julien Mairal From kernel methods to deep learning 66/107

Beyond the translation group

Can we achieve invariance to other groups?

Group action: Lgx(u) = x(g−1u) (e.g., rotations, reflections).

Feature maps x(u) defined on u ∈ G (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:
Px(u) = (x(uv))v∈S .

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v).

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...

Julien Mairal From kernel methods to deep learning 67/107

Beyond the translation group

Can we achieve invariance to other groups?

Group action: Lgx(u) = x(g−1u) (e.g., rotations, reflections).

Feature maps x(u) defined on u ∈ G (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:
Px(u) = (x(uv))v∈S .

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v).

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...

Julien Mairal From kernel methods to deep learning 67/107

Stability to deformations for convolutional NTK

Theorem (Stability of NTK [Bietti and Mairal, 2019b])

Let Φn(x) = ΦNTK(A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(
Cβn

7/4‖∇τ‖1/2∞ + C ′βn
2‖∇τ‖∞ +

√
n+ 1

C

σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:

Julien Mairal From kernel methods to deep learning 68/107

Stability to deformations for convolutional NTK

Theorem (Stability of NTK [Bietti and Mairal, 2019b])

Let Φn(x) = ΦNTK(A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(
Cβn

7/4‖∇τ‖1/2∞ + C ′βn
2‖∇τ‖∞ +

√
n+ 1

C

σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:

0 1 2 3
deformation size

0.0

0.1

0.2

m
ea

n
re

la
tiv

e
di

st
an

ce

deformations
deformations + translation
same label
all labels

(a) CKN

0 1 2 3
deformation size

0.0

0.1

0.2

0.3

m
ea

n
re

la
tiv

e
di

st
an

ce
(b) NTK

Julien Mairal From kernel methods to deep learning 68/107

Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.

Julien Mairal From kernel methods to deep learning 69/107

Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.

Julien Mairal From kernel methods to deep learning 69/107

Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.

Julien Mairal From kernel methods to deep learning 69/107

Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.

Julien Mairal From kernel methods to deep learning 69/107

Discretization and signal preservation: example in 1D

x̄k−1

P̄kx̄k−1(u) ∈ Pk

M̄kP̄kx̄k−1

dot-product kernel

ĀkM̄kP̄kx̄k−1

linear pooling

downsampling

x̄k

recovery with linear measurements

Ākx̄k−1

deconvolution

x̄k−1

Julien Mairal From kernel methods to deep learning 70/107

RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

(〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk ≤ C
2
σ(‖g‖2) =

∑∞
j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal From kernel methods to deep learning 71/107

RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

(〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk ≤ C
2
σ(‖g‖2) =

∑∞
j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal From kernel methods to deep learning 71/107

RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

(〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk ≤ C
2
σ(‖g‖2) =

∑∞
j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal From kernel methods to deep learning 71/107

RKHS of patch kernels Kk

Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2).

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p).

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ

2
).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0
f(x

)
f : x (x)

ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2

Julien Mairal From kernel methods to deep learning 72/107

Constructing a CNN in the RKHS HK
Some CNNs live in the RKHS: “linearization” principle

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

Consider a CNN with filters W ij
k (u), u ∈ Sk.

k: layer;
i: index of filter;
j: index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm:
‖fσ‖2 ≤ ‖Wn+1‖22 C2

σ(‖Wn‖22 C2
σ(‖Wn–1‖22 C2

σ(. . .))).

Linear layers: product of spectral norms.

Julien Mairal From kernel methods to deep learning 73/107

Constructing a CNN in the RKHS HK
Some CNNs live in the RKHS: “linearization” principle

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

Consider a CNN with filters W ij
k (u), u ∈ Sk.

k: layer;
i: index of filter;
j: index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm (linear layers):

‖fσ‖2 ≤ ‖Wn+1‖22 · ‖Wn‖22 · ‖Wn–1‖22 . . . ‖W1‖22.

Linear layers: product of spectral norms.

Julien Mairal From kernel methods to deep learning 73/107

Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ RadN (FB) ≤ O
(
BR√
N

)
.

Leads to margin bound O(‖f̂N‖R/γ
√
N) for a learned CNN f̂N with margin

(confidence) γ > 0.

Related to recent generalization bounds for neural networks based on product of
spectral norms [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...

Julien Mairal From kernel methods to deep learning 74/107

Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ RadN (FB) ≤ O
(
BR√
N

)
.

Leads to margin bound O(‖f̂N‖R/γ
√
N) for a learned CNN f̂N with margin

(confidence) γ > 0.

Related to recent generalization bounds for neural networks based on product of
spectral norms [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...

Julien Mairal From kernel methods to deep learning 74/107

Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal From kernel methods to deep learning 75/107

Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal From kernel methods to deep learning 75/107

Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal From kernel methods to deep learning 75/107

Robust Deep Learning Models with Kernels

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A Kernel Perspective for Regularizing
Deep Neural Networks. International Conference on Machine Learning (ICML). 2019.

Julien Mairal From kernel methods to deep learning 76/107

Convolutional Neural Networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;

Julien Mairal From kernel methods to deep learning 77/107

Convolutional Neural Networks

[Simonyan and Zisserman, 2014]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;

Julien Mairal From kernel methods to deep learning 77/107

Convolutional neural networks for biological sequences

Figure: two-layer CNN architecture from Alipanahi et al. [2015]

Sequences are represented by one-hot encoding (A=(1,0,0,0),C=(0,1,0,0),. . .).

Single convolution layer followed by linear classifier.

Julien Mairal From kernel methods to deep learning 78/107

Adversarial examples, Picture from Kurakin et al. [2016]

Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken
on a smartphone fools the classifier.

Julien Mairal From kernel methods to deep learning 79/107

Adversarial Examples

clean + noise → “ostrich” [Szegedy et al., 2013].

Julien Mairal From kernel methods to deep learning 80/107

Adversarial Examples

(a real ostrich)

Julien Mairal From kernel methods to deep learning 81/107

Adversarial Examples

https://github.com/anishathalye/obfuscated-gradients

Julien Mairal From kernel methods to deep learning 82/107

https://github.com/anishathalye/obfuscated-gradients

Convolutional Neural Networks

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?

Julien Mairal From kernel methods to deep learning 83/107

A kernel perspective: regularization

Assume we have an RKHS H for deep networks:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) +
λ

2
‖f‖2H.

‖.‖H encourages smoothness and stability w.r.t. the geometry induced by the kernel (which
depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016a]

do kernel approximations at each layer, which leads to non-standard CNNs called
convolutional kernel networks (CKNs).
not the subject of this part.

Julien Mairal From kernel methods to deep learning 84/107

A kernel perspective: regularization

Assume we have an RKHS H for deep networks:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) +
λ

2
‖f‖2H.

‖.‖H encourages smoothness and stability w.r.t. the geometry induced by the kernel (which
depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016a]

do kernel approximations at each layer, which leads to non-standard CNNs called
convolutional kernel networks (CKNs).

not the subject of this part.

Julien Mairal From kernel methods to deep learning 84/107

A kernel perspective: regularization

Assume we have an RKHS H for deep networks:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) +
λ

2
‖f‖2H.

‖.‖H encourages smoothness and stability w.r.t. the geometry induced by the kernel (which
depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016a]

do kernel approximations at each layer, which leads to non-standard CNNs called
convolutional kernel networks (CKNs).
not the subject of this part.

Julien Mairal From kernel methods to deep learning 84/107

A kernel perspective: regularization

Consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

This is different than CKNs since fθ admits a classical parametrization.

Problem

‖fθ‖H is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of ‖.‖H.

This is the subject of this part.

Julien Mairal From kernel methods to deep learning 85/107

A kernel perspective: regularization

Consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

This is different than CKNs since fθ admits a classical parametrization.

Problem

‖fθ‖H is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of ‖.‖H.

This is the subject of this part.

Julien Mairal From kernel methods to deep learning 85/107

A kernel perspective: regularization

Consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

This is different than CKNs since fθ admits a classical parametrization.

Problem

‖fθ‖H is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of ‖.‖H.

This is the subject of this part.

Julien Mairal From kernel methods to deep learning 85/107

A kernel perspective: regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

Upper-bounds

‖fθ‖H ≤ ω(‖Wk‖, ‖Wk–1‖, . . . , ‖W1‖) (spectral norms) ,

where the Wj ’s are the convolution filters. The bound suggests controlling the spectral norm
of the filters.

[Cisse et al., 2017, Miyato et al., 2018, Bartlett et al., 2017]...

Julien Mairal From kernel methods to deep learning 86/107

A kernel perspective: regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

Lower-bounds

‖f‖H = sup
‖u‖H≤1

〈f, u〉H ≥ sup
u∈U
〈f, u〉H for U ⊆ BH(1).

We design a set U that leads to a tractable approximation, but it requires some knowledge
about the properties of H,Φ.

Julien Mairal From kernel methods to deep learning 87/107

A kernel perspective: regularization

Adversarial penalty

We know that Φ is non-expansive and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
λ‖f‖2δ = sup

x∈X ,‖δ‖2≤λ
f(x+ δ)− f(x).

The resulting strategy is related to adversarial regularization (but it is decoupled from the
loss term and does not use labels).

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) + sup
x∈X ,‖δ‖2≤λ

fθ(x+ δ)− fθ(x).

[Madry et al., 2018]
Julien Mairal From kernel methods to deep learning 88/107

A kernel perspective: regularization

Adversarial penalty

We know that Φ is non-expansive and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
λ‖f‖2δ = sup

x∈X ,‖δ‖2≤λ
f(x+ δ)− f(x).

The resulting strategy is related to adversarial regularization (but it is decoupled from the
loss term and does not use labels).
vs, for adversarial regularization,

min
θ∈Rp

1

n

n∑

i=1

sup
‖δ‖2≤λ

L(yi, fθ(xi + δ)).

[Madry et al., 2018]
Julien Mairal From kernel methods to deep learning 88/107

A kernel perspective: regularization

Gradient penalties

We know that Φ is non-expansive and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
‖∇f‖ = sup

x∈X
‖∇f(x)‖2.

Related penalties have been used to stabilize the training of GANs and gradients of the loss
function have been used to improve robustness.

[Gulrajani et al., 2017, Roth et al., 2017, 2018, Drucker and Le Cun, 1991, Lyu et al., 2015, Simon-Gabriel

et al., 2018]

Julien Mairal From kernel methods to deep learning 89/107

A kernel perspective: regularization

Adversarial deformation penalties

We know that Φ is stable to deformations and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(Lτx)− Φ(x) : x ∈ X , τ}

leads to
‖f‖2τ = sup

x∈X
τ small deformation

f(Lτx)− f(x).

This is related to data augmentation and tangent propagation.

[Engstrom et al., 2017, Simard et al., 1998]

Julien Mairal From kernel methods to deep learning 90/107

Experiments with Few labeled Samples

Table: Accuracies on CIFAR10 with 1 000 examples for standard architectures VGG-11 and
ResNet-18. With / without data augmentation.

Method 1k VGG-11 1k ResNet-18

No weight decay 50.70 / 43.75 45.23 / 37.12
Weight decay 51.32 / 43.95 44.85 / 37.09
SN projection 54.14 / 46.70 47.12 / 37.28
PGD-`2 51.25 / 44.40 45.80 / 41.87
grad-`2 55.19 / 43.88 49.30 / 44.65
‖f‖2δ penalty 51.41 / 45.07 48.73 / 43.72
‖∇f‖2 penalty 54.80 / 46.37 48.99 / 44.97
PGD-`2 + SN proj 54.19 / 46.66 47.47 / 41.25
grad-`2 + SN proj 55.32 / 46.88 48.73 / 42.78
‖f‖2δ + SN proj 54.02 / 46.72 48.12 / 43.56
‖∇f‖2 + SN proj 55.24 / 46.80 49.06 / 44.92

Julien Mairal From kernel methods to deep learning 91/107

Experiments with Few labeled Samples
Table: Accuracies with 300 or 1 000 examples from MNIST, using deformations. (∗) indicates that
random deformations were included as training examples,

Method 300 VGG 1k VGG

Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
‖f‖2δ penalty 94.17 96.99
‖∇f‖2 penalty 94.08 96.82
Weight decay (∗) 92.41 95.64
grad-`2 (∗) 95.05 97.48
‖Dτf‖2 penalty 94.18 96.98
‖f‖2τ penalty 94.42 97.13
‖f‖2τ + ‖∇f‖2 94.75 97.40
‖f‖2τ + ‖f‖2δ 95.23 97.66
‖f‖2τ + ‖f‖2δ (∗) 95.53 97.56
‖f‖2τ + ‖f‖2δ + SN proj 95.20 97.60
‖f‖2τ + ‖f‖2δ + SN proj (∗) 95.40 97.77

Julien Mairal From kernel methods to deep learning 92/107

Experiments with Few labeled Samples
Table: AUROC50 for protein homology detection tasks using CNN, with or without data
augmentation (DA).

Method No DA DA

No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
‖f‖2δ 0.600 0.608
‖∇f‖2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
‖f‖2δ + SN proj 0.630 0.644
‖∇f‖2 + SN proj 0.603 0.625

Note: statistical tests have been conducted for all of these experiments (see paper).

Julien Mairal From kernel methods to deep learning 93/107

Experiments with Few labeled Samples
Table: AUROC50 for protein homology detection tasks using CNN, with or without data
augmentation (DA).

Method No DA DA

No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
‖f‖2δ 0.600 0.608
‖∇f‖2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
‖f‖2δ + SN proj 0.630 0.644
‖∇f‖2 + SN proj 0.603 0.625

Note: statistical tests have been conducted for all of these experiments (see paper).

Julien Mairal From kernel methods to deep learning 93/107

Adversarial Robustness: Trade-offs

0.800 0.825 0.850 0.875 0.900 0.925
standard accuracy

0.76

0.78

0.80

0.82

0.84

0.86

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

2, test = 0.1
PGD- 2
grad- 2

|f|2

| f|2
PGD- 2+
SN proj
SN proj
SN pen
(SVD)
clean

0.5 0.6 0.7 0.8 0.9
standard accuracy

0.1

0.2

0.3

0.4

0.5
2, test = 1.0

Figure: Robustness trade-off curves of different regularization methods for VGG11 on CIFAR10. Each
plot shows test accuracy vs adversarial test accuracy Different points on a curve correspond to
training with different regularization strengths.Julien Mairal From kernel methods to deep learning 94/107

Conclusions from this work on regularization

What the kernel perspective brings us

gives a unified perspective on many regularization principles.

useful both for generalization and robustness.

related to robust optimization.

Future work

regularization based on kernel approximations.

semi-supervised learning to exploit unlabeled data.

relation with implicit regularization.

Julien Mairal From kernel methods to deep learning 95/107

References I

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831–838, 2015.

Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Poggio. Deep convolutional networks are
hierarchical kernel machines. arXiv preprint arXiv:1508.01084, 2015.

Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. arXiv preprint arXiv:1706.08498, 2017.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research (JMLR), 2019a.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Advances in
Neural Information Processing Systems (NeurIPS), 2019b.

Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspective for
regularizing deep neural networks. In Proceedings of the International Conference on Machine
Learning (ICML), 2019.

Julien Mairal From kernel methods to deep learning 96/107

References II
L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of some
recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

J. V. Bouvrie, L. Rosasco, and T. Poggio. On invariance in hierarchical models. In Advances in
Neural Information Processing Systems (NIPS), 2009.

David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpolation
and adaptive networks. Technical report, DTIC Document, 1988.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transactions on
pattern analysis and machine intelligence (PAMI), 35(8):1872–1886, 2013.

Dexiong Chen, Laurent Jacob, and Julien Mairal. Biological sequence modeling with convolutional
kernel networks. Bioinformatics, 35(18):3294–3302, 02 2019a.

Julien Mairal From kernel methods to deep learning 97/107

References III
Dexiong Chen, Laurent Jacob, and Julien Mairal. Recurrent kernel networks. In Advances in Neural

Information Processing Systems (NeurIPS), 2019b.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems (NIPS), 2009.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In Proceedings of the International
Conference on Machine Learning (ICML), 2017.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning (ICML), 2016.

A. Damianou and N. Lawrence. Deep Gaussian processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

Harris Drucker and Yann Le Cun. Double backpropagation increasing generalization performance. In
International Joint Conference on Neural Networks (IJCNN), 1991.

Julien Mairal From kernel methods to deep learning 98/107

References IV
Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu

Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a
translation suffice: Fooling cnns with simple transformations. arXiv preprint arXiv:1712.02779,
2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems
(NIPS), 2017.

Sepp Hochreiter, Martin Heusel, and Klaus Obermayer. Fast model-based protein homology detection
without alignment. Bioinformatics, 23(14):1728–1736, 2007.

Jie Hou, Badri Adhikari, and Jianlin Cheng. DeepSF: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 12 2017. ISSN 1367-4803. doi:
10.1093/bioinformatics/btx780. URL https://doi.org/10.1093/bioinformatics/btx780.

Julien Mairal From kernel methods to deep learning 99/107

https://doi.org/10.1093/bioinformatics/btx780

References V
Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and

generalization in neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

Nils M Kriege, Marion Neumann, Christopher Morris, Kristian Kersting, and Petra Mutzel. A unifying
view of explicit and implicit feature maps of graph kernels. Data Mining and Knowledge Discovery,
33(6):1505–1547, 2019.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. P. IEEE, 86(11):2278–2324, 1998.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from
sequence and graph kernels. In Proceedings of the International Conference on Machine Learning
(ICML), 2017.

Julien Mairal From kernel methods to deep learning 100/107

References VI
C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch String Kernels for SVM Protein

Classification. In Advances in Neural Information Processing Systems 15. MIT Press, 2003. URL
http://www.cs.columbia.edu/~cleslie/papers/mismatch-short.pdf.

Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for protein sequences.
Journal of Machine Learning Research, 5(Nov):1435–1455, 2004.

Christina S Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string kernel
for svm protein classification. In Pacific Symposium on Biocomputing, volume 7, pages 566–575.
Hawaii, USA, 2002.

Li Liao and William Stafford Noble. Combining pairwise sequence similarity and support vector
machines for detecting remote protein evolutionary and structural relationships. Journal of
computational biology, 10(6):857–868, 2003.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. Journal of Machine Learning Research (JMLR), 2:419–444, 2002.

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family for
adversarial examples. In IEEE International Conference on Data Mining (ICDM), 2015.

Julien Mairal From kernel methods to deep learning 101/107

http://www.cs.columbia.edu/~cleslie/papers/mismatch-short.pdf

References VII
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

Towards deep learning models resistant to adversarial attacks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In Advances in
Neural Information Processing Systems (NIPS), 2016a.

Julien Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In
Advances in Neural Information Processing Systems (NIPS), 2016b.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel networks. In
Advances in Neural Information Processing Systems (NIPS), 2014.

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65
(10):1331–1398, 2012.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Julien Mairal From kernel methods to deep learning 102/107

References VIII
GrÃŠgoire Montavon, Mikio L Braun, and Klaus-Robert MÃÅ§ller. Kernel analysis of deep networks.

Journal of Machine Learning Research, 12(Sep):2563–2581, 2011.

Alyssa Morrow, Vaishaal Shankar, Devin Petersohn, Anthony Joseph, Benjamin Recht, and Nir Yosef.
Convolutional kitchen sinks for transcription factor binding site prediction. arXiv preprint
arXiv:1706.00125, 2017.

Radford M Neal. Bayesian learning for neural networks. Springer, 1996.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A PAC-Bayesian
approach to spectrally-normalized margin bounds for neural networks. In Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien Mairal, Florent Perronin, and Cordelia Schmid.
Local convolutional features with unsupervised training for image retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems (NIPS), 2007.

Julien Mairal From kernel methods to deep learning 103/107

References IX
Anant Raj, Abhishek Kumar, Youssef Mroueh, P Thomas Fletcher, and Bernhard Scholkopf. Local

group invariant representations via orbit embeddings. preprint arXiv:1612.01988, 2016.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of
generative adversarial networks through regularization. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Adversarially robust
training through structured gradient regularization. arXiv preprint arXiv:1805.08736, 2018.

B. Scholkopf. Support Vector Learning. PhD thesis, Technischen Universität Berlin, 1997.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Julien Mairal From kernel methods to deep learning 104/107

References X
Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan

Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. preprint arXiv:2003.02237,
2020.

John Shawe-Taylor and Nello Cristianini. An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press, 2004.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research (JMLR), 12:
2539–2561, 2011.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), 2013.

Patrice Y Simard, Yann A LeCun, John S Denker, and Bernard Victorri. Transformation invariance in
pattern recognition–tangent distance and tangent propagation. In Neural networks: tricks of the
trade, pages 239–274. Springer, 1998.

Julien Mairal From kernel methods to deep learning 105/107

References XI
Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David Lopez-Paz.

Adversarial vulnerability of neural networks increases with input dimension. arXiv preprint
arXiv:1802.01421, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations (ICLR),
2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein Weisfeiler-Lehman graph kernels. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1995.

Jean-Philippe Vert, Hiroto Saigo, and Tatsuya Akutsu. Convolution and local alignment kernels.
Kernel methods in computational biology, pages 131–154, 2004.

Julien Mairal From kernel methods to deep learning 106/107

References XII
Christopher KI Williams and Matthias Seeger. Using the Nyström method to speed up kernel

machines. In Advances in Neural Information Processing Systems (NIPS), 2001.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In
International Conference on Machine Learning (ICML), 2017.

Yuchen Zhang, Jason D Lee, and Michael I Jordan. `1-regularized neural networks are improperly
learnable in polynomial time. In International Conference on Machine Learning (ICML), 2016.

Julien Mairal From kernel methods to deep learning 107/107

	References

