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Learning from a data stream

First Trust MASDAG Clean Edge US Liguid Series (QCLN) 21.20 +0.05 8 Apr 2014
Draily
21
20
19
18
17

Mz Jun Jul Aug Sep Qct o Dec 2019 Febk Mar Apr

prediction



Learning a data stream
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Learning from a data stream
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Automated medical diagnosis from sensor data
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Learning from a data stream

A

P A T) AN R DS e S B ek

@ (S
e 300 i 3 v B

St ep T R Z Sel s D A S

8 BT B AW o & R e & e

% (S

a2 Sl o\ D R 2 Sal oA T
ek

B e

-

% (S50 degor A

Pt KNIV

-

ek 2 e Sate 2 ey
A

IO 1L v SN IR 0 R S 1L v N R AW
TR 1 S8 S e 3 e R 3 S s 3 e

W S

B SV TSt AN G0k SV S AN G
— o

NP B @ o @ BRI B &0 e B B
SRRV 4R G @V S R AN ok s

A ¢ 2B\
AV G ey 2

—

o~
£
»

Recognition of characters or handwriting



Common feature

The predictor is a path X: [a, b] — RY.




Google “Quick, Draw!” dataset
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Data representation

A sample from the class flower
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Data representation
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The signature will overcome some of these problems.
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The signature will overcome some of these problems.

> It is a transformation from a path to a sequence of coefficients.
> Independent of time parameterization.
> Encodes geometric properties of the path.

> No loss of information.
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A brief history

Chen's work for piecewise smooth paths.
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INTEGRATION OF PATHS, GEOMETRIC INVARIANTS AND A
GENERALIZED BAKER-HAUSDORFF FORMULA

Br KvoTews G
Received October 17, 1855)
(Revised May 2, 1050)
Let at(ax(0), -+, au®), @ S ¢ S b, be a path in the affne m-space R™.
Starting from the lin integral | dz., we define inductively, for p 2 2,

f_'zz., . [_' (f.‘dx.‘ dx\,,,) da, (0),

where o denotes the portion of a with the parameter ranging from a to f. It is

- dz,

observed that [ dz,, -+ dz, acts as a ™ order contravariant tensor associ

ated with the path a when R™ undergoes a linear transformation. Some affine
and euclidean invariants of  are derived from these tensors. Moreover, we asso-
ciate to the path a the formal power series

o) = 1+ T3 2([ dzy, o dx\_)X\, X,

where X; , -+, Xa are noncommutative indeterminates. Theorem 4.2 asserts
that log 8(a) is a Lie element, wer series u; + uy )
where each u, is a form of degree p generated by Xi , -+ , X through taking
bracket products and forming linear combinations. We obtain, as a corollary,
the Baker-Hausdorff formula which states that, if X and ¥ are noncommutative
indeterminates, then log (exp X -exp ¥) is a Lie clement.

Section 1 supplies first some basic knowledge about non-commutative formal
power series and then some preparatory definitions and formulas for Theorems
4.1 and 4.2. In Section 2, the iterated integration of paths is dcl\m:d and in
Section 3, its geometric applications are indicated. Section 4 contains the
proot of the generalized Baker-Hausdorl formala which is frther extended, in
Section 5, o the case where the affine space R™ is replaced by a differentiable
mainfold. For those who are only interested in the seomtric apoct of this paper,
Sections 2 and 3 may be easily read without Sectio

‘This paper is & coulm\u(xou o the author's work in [Chen, (3)] and is some-
what related to the paper [Chen, (2)) 2 is essentially
Hausdorfl’s, inwhich Lemma 1.1 is implicitly used. Its proof, ot an s one,
is furnished in this paper. Though borrowing some of Hausdorfl’s technique,
Theorem 4.2 is proved in a simpler way and offers a stronger result than the
Baker-Hausdorff formula.
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“This cotent downlozaed from 134.157.146,115 0n i, 12 2019 13.08:32 UTC.
Al use subject o Htps!bout S argerms

15



Lyons' extension to rough paths.
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A brief history

Machine learning applications are .

DeepWriterID: An End-to-end Online Text-independent
Writer Identification System

Weiin Yang, Lianwen Jin', Manfei Liu

College ofBlecronic an Informaton Englnet

South China University of Technology, Guangzhou, China

y1290@163.com, *lianwen jin@gmail com
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a decp convolutional neural network (CNN) to address these
blems. A key feature of | are

proposing, called DropSegment. It is designed to achieve data

o e e ety e uce path.
signature feature o improve performance. Pxpenmgnx
b

R
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we only use pen en
given handwriting samples, we achieved new stat
ientiemion rtes of 557254 for Chinet sxs 1t SHS1% for
English text.

Keywords—Online textindependent writer _identifcation;
convoiutional neural networks deep learning; DropSegment; path-
signature feature maps.

1. INTRODUCTION

Wt idtifaon i 8tk of deeining » 1t of
andi s according to the degree of similarity between
i handoritng and  smple of anknown authoshp 11
Camenty, it s populr_owing 1o mg devclopment and
commercialization of tot

Gevices such s smartphones, and abit PCo. fro rnge of

petforning moble bak st and authenicaing scess

ek, S os of these appicatiosare closelyrelied
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hndoing caticaion Tefs mare atention fom academ
and industry

Identifying the handwriting of a writer is one of the highly
challnging problems i he felds o artfcl insligence and
patter recognition. Conventionally, handwriting identification
Ssems Tolow ' sience. of daa sequiiion, gt
preprocessing, feature_extraction, and _classification (2],
Rescarch into handuwriting identification has been focused on

Data Preprocessing

LI

are considered more general but harder to-identify, as they
ntain In i, syste

Figure 1. lustration of DeepWeiterID for anline handwiting-based
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Mathematical setting

= A path X:[0,1] — R Notation: X;.
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Mathematical setting

= A path X:[0,1] — R Notation: X;.
» Assumption: || X]|1.var < 00.
= Y:[0,1] — R a continuous path.

= Riemann-Stieljes integral of Y against X is well-defined. Notation:

1
/ Y,dX..
0

= X; continuously differentiable:

1 1
/ Y, dX, = / Y X,dt
0 0

Example :
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Mathematical setting

= A path X:[0,1] — R Notation: X;.
» Assumption: || X]|1.var < 00.
= Y:[0,1] — R a continuous path.

= Riemann-Stieljes integral of Y against X is well-defined. Notation:

1
/ Y,dX..
0

Example :

= Yy=1forall te[0,1]:

-1 1
/ Ytht = / dXt = X]_ - X().
0 0

18



Iterated integrals

= X:[0,1] 5 RY, X = (X,...,X9).
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Iterated integrals

= X:[0,1] = R X=(X,...,X9).
= Forie{l,...,d},

SO X)po.q = / dX. = X, — X} — a path!
0<s<t
» For (i,)) € {1,...,d}?,
S(f7j)(X)[O,t] = /
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Iterated integrals

= X:[0,1] = R X=(X,...,X9).
= Forie{l,...,d},

SO X)po.q = / dX. = X, — X} — a path!
0<s<t
= For (i,j) € {1,...,d}?,
S(i’j)(X)[O,t] :/

0<s<t

5(/')(X)[0’5]dxfs' = / dX.dX. — a path!

0<r<s<t
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Iterated integrals

X:[0,1] = RY, X=(X,...,X9).
Forie {1,...,d},

SO X)po.q = / dX. = X, — X} — a path!

0<s<t

» For (i,)) € {1,...,d}?,

S (X) 0,9 = /

0<s<t

SO(X)0,9dX, = / dX.dX, — a path!
0<r<s<t

= Recursively, for (i1, ..., k) € {1,...,d}

S(il’””’ik)(x)[o’t] = / d)(’t1 000 dX"‘-‘i
0<ti<tr<---<t<t
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Iterated integrals

= X:[0,1] 5 RY, X=(X,...,X9).
= Forie{l,...,d},
SO X)po.q = / dX. = X, — X} — a path!
0<s<t
= For (i,j) € {1,...,d}?,
S(f7j)(X)[0,t] =/

0<s<t

SO(X)0,9dX, = / dXldX. — a path!

0<r<s<t

= Recursively, for (i1, ..., k) € {1,...,d}

5(1'1’”'"’.‘()()()[0’[.] = / d)(’t1 000 dX"‘-‘i
0<ti<tr<---<t<t

= Sl (X) g q) is the k-fold iterated integral of X along i, ..., ik.
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Definition
The signature of X'is the sequence of real numbers

S(X) = (1,59(X),...., S9X), SHD(x), (), ...).
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Definition
The signature of X'is the sequence of real numbers

S(X) = (1,59(X),...., S9X), SHD(x), (), ...).

s d=3-(1,2,3,11,12,13,21,22,23,31,32,33, 111,112,113, ... .)

= Tensor notation:

X = Z St (X)e, @ - @ e,
(iyeeesi) C{1L,... d}k

= Signature:
S(X) = (1, X1, X2,..., Xk ..) € T(RY),
where
TR =10R'® (R)®? 0 - & (R)% @

20



For X; = (X}, X),
X'=(fyax Joaxt) = (X=X X-X)

21



For X; = (X}, X}),
X (fax frox)=(x-% X-x)

w2 _ (Jo o dxidXe [y Jy dXidX;
o Jo dXCdX: [y [y dX2dX;

21



For X; = (X}, X}),
x! = (‘];)1 dX; fol dXt) = (Xl X Xi— XO)

S o S
X2 — ./01 .fot dXsdX; jol ./ot dXsdX;
Jo Jo CdXe [y Jo dXCdX;

Rank 0: |:| Rank 1: |:H:H:“:H:|

(scalar) (vector)

Rank 2: (matrix) Rank 3:

N
i

21



Truncated signature

= Truncated signature at order m:

S™(X) = (1, X1, X2%,..., X™).
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Truncated signature

= Truncated signature at order m:
S™(X) = (1, X1, X2, ... X™).

= Dimension:
. dmtt—1

salm) =) o = =~

22



Geometric interpretation

5@1(x)

X2

51L2(x)

X'1

23



Important example

Linear path
= X:[0,1] — R a linear path.
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= For any = (i1,...,ik),
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Important example

Linear path

= X:[0,1] — R a linear path.
n Xt =] XO —+ (Xl = Xo)t

= For any = (i1,...,ik),
175,
S0 = 1104 - %)
i
> Very useful: in practice, we always deal with piecewise linear paths.

v

Needed: concatenation operations.

24



Chen’s identity
= X:[a,b] > R¥and Y: [b,d — R paths.
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Chen’s identity
= X:[a,b] > R¥and Y: [b,d — R paths.
= X*Y:[a c — RYthe concatenation.

= Then
S(X*Y) = S(X) ® S(Y).
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Chen’s identity

= X:[a,b] > R¥and Y: [b,d — R paths.
XxY:[a,d — RY the concatenation.
Then

S(X* Y) = S(X) @ S(Y).

> We can compute the signature of piecewise linear paths!

v

Data stream of p points and truncation at m: O(pd™) operations.

v

Fast packages and libraries available in C++ and Python.

25



Invariance under time reparametrization

= X:[0,1] — R? a path.
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Invariance under time reparametrization
= X:[0,1] — R? a path.
= ¢ :[0,1] — [0,1] a reparametrization
= If X; = Xy(p), then

S(X) = S(X).
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Invariance under time reparametrization

= X:[0,1] — R9 a path.

¥ 1 [0,1] — [0,1] a reparametrization
If X; = Xy(e), then

S(X) = S(X).

> A key advantage of the signature modeling.

v

Encoding of the geometric properties of paths.

26



Time reversal

= X:[0,1] — R a path.

27



Time reversal
= X:[0,1] — R¥ a path.
< —
= X time-reversal of X: X;= Xi_¢.

= If1=(1,0,...,0,...) € T(RY), then

(X)) © S(X) =1.
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Time reversal
= X:[0,1] — R¥ a path.
< —
= X time-reversal of X: X;= Xi_¢.

= If1=(1,0,...,0,...) € T(RY), then

(X)) © S(X) =1.

> Think “S(X)~1 = 5(X) "

27



Time reversal
= X:[0,1] — R a path.
? time-reversal of X: ?t =Xi_¢.
If 1 =(1,0,...,0,...) € T(RY), then

X))@ s(X)=1

Think “S(X)~* = S(X) "
Signature not unique: S(X) ® S( X ) S(X = X) 1.

v

v

27



Properties 3

18 16
14 14
12 12
10 10
08 08
08 (13
04 04
oz 02
00 0z 04 06 08 10 0o 02 04 08 08 10
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Tree-like paths

= Definition of an equivalence relation on paths such that

X~ Y S(X) = S(Y).
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Tree-like paths

= Definition of an equivalence relation on paths such that
X~ Y& S(X)=5(Y).

= X~ Yif Xx V is tree-like.
= 5(X) =1« Xtree-like.
= Examples of tree-like paths:
- Xx* Z,
- Xx X % V * Y,
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Tree-like paths

= Definition of an equivalence relation on paths such that
X~ Y& S(X)=5(Y).

= X~ Yif Xx V is tree-like.

= 5(X) =14 X tree-like.

= Examples of tree-like paths:
- X*Z,
- Xx X *f* Y, .
- XxYx ZxZx Y * X.

29



Uniqueness

= For any X, there exists a unique path of minimal length in its
equivalence class, denoted by X and called the reduced path.
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For any X, there exists a unique path of minimal length in its
equivalence class, denoted by X and called the reduced path.

If X has at least one monotonic coordinate, then S(X) determines X
uniquely, up to translation and reparametrization.
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Uniqueness

= For any X, there exists a unique path of minimal length in its
equivalence class, denoted by X and called the reduced path.

= If X has at least one monotonic coordinate, then S(X) determines X
uniquely, up to translation and reparametrization.

> The signature characterizes paths.
> Trick: add a dummy monotonic component to X.

> Important concept of augmentation.

30



Can we reconstruct the path from its signature?

> Currently a lot of work in this direction;

> Efficient algorithm for piecewise linear paths (Chang and Lyons,
2019) — Python implementation.

> Applications in signal processing, e.g., sound compression, time
series smoothing...
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Signature approximation

= D compact subset of paths from [0, 1] to R that are not tree-like
equivalent.
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Signature approximation
= D compact subset of paths from [0, 1] to R that are not tree-like
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= f: D — R continuous.
= Then, for every € > 0, there exists w € T(RY) such that, for any

Xe D,
1X) — (w, S(X)| <.
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Signature approximation

D compact subset of paths from [0, 1] to R? that are not tree-like
equivalent.

f: D — R continuous.

Then, for every £ > 0, there exists w € T(IRY) such that, for any
XeD,

1X) — (w, S(X)| <.

v

Signature and linear model are happy together!

> This raises many interesting statistical issues.

32



Exponential decay of signature coefficients

= X:[0,1] — R a path.

33]



Exponential decay of signature coefficients
= X:[0,1] — R a path.
= Then, for any k>0, I C {1,...d},

| ||XH/1<—V r
S00] < Plher
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Exponential decay of signature coefficients
= X:[0,1] — R a path.
= Then, for any k>0, I C {1,...d},

| ||XH/1<—V r
S00] < Plher

> Useful for approximation properties.

33]
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Supervised learning

= Goal: understand the relationship between X € 2" and Y€ #.
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Supervised learning

= Goal: understand the relationship between X € 2" and Y€ #.
» Regression: # =R Classification: # = {1,...,q}.

Data: (X1, Y1),...,(Xn, Ya) € & x &, iid. ~ (X, Y).

= Prediction function: f(X) =~ Y, 8 € R*.

y1=1 yo=1 y3 =2 ya=3 y5 =2

34



Supervised learning

= Loss function ¢ : % x % — RT.
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= Loss function ¢ : % x % — RT.

= Empirical risk minimization: choose

. 1<
0 € argmin— LY, (X))
rming 3 €(%, (%)
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Supervised learning

= Loss function ¢ : % x % — RT.

= Empirical risk minimization: choose

. 1<
0 € argmin— LY, (X))
rming 3 €(%, (%)

» Least squares regression: 2 = R and {(y, fo(x)) = (v — fo(x))%.
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Supervised learning

= Loss function £ % x % — RT.
= Empirical risk minimization: choose
& e zn:/(v fo(X3))
ar, n— AR i))-
egelRP W= ’
» Least squares regression: 2 = R and {(y, fo(x)) = (v — fo(x))%.
= Binary classification: %" = {0,1} and £(y, fo(x)) = L5, (04

35



Feedforward neural network

fo(x) = o (TLp(Ti—1p( - - p(T1x))))

W, 6 W, Cp) W; P W,
fo?f =0 O=—>5 0 (@) i)
00 O
O O
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Feedforward neural network

fo(x) = o(TLp(Ti1p(- - p(T1x))))

> L — 1 hidden layers.

W, 6 W, Cp) W; P W,
fo?f =0 O=—>5 0 (@) i)
00 O
O O
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Feedforward neural network

fo(x) = o(TLp(Ti1p(- - p(T1x))))

> L — 1 hidden layers.
> Toyx= Wyx+ by, £=1,...,L.

W 6 W, 6 W 4 W,
S S OO
xO—f;; =9 050 (@) f»
e O, O O
O O
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Feedforward neural network

fo(x) = o(TLp(Ti1p(- - p(T1x))))

> L — 1 hidden layers.
> Toyx= Wyx+ by, £=1,...,L.
> p = activation function (ReLU p(x) = max(x,0)).
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Feedforward neural network

fo(x) = o(TLp(Ti1p(- - p(T1x))))

> L — 1 hidden layers.
> Toyx= Wyx+ by, £=1,...,L.
> p = activation function (ReLU p(x) = max(x,0)).

> o = output function.

W 6 W, 6 W 4 W,
S S OO
r SEBEEOPSE SN0 @ i
=0 O O
O O

36



ture + learning algorithm

Dense network

/,f\/( ,,—J\//i‘r) Q 0
\ O\ N Q O
=L\ B m os: O .
\/“\/V;X > "Xy —> & o O —> «Flower»
N/ N\ d O
o O
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ure + learning algorithm

Dense network

— "Xy —> 0 ——> «Flower»

> Yang et al. (2017): skeleton-based human action recognition.
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ure + learning algorithm

Dense network

O ——>» «Flower »

> Yang et al. (2017): skeleton-based human action recognition.

> Sequence of positions of human joints — high dimensional signature
coefficients — small dense network.
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Temporal approaches

= |dea: construct a path of signature coefficients.
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Temporal approaches

= |dea: construct a path of signature coefficients.

VY Recurrent network
N s | SO S~
\ -0
—> «Flower »
- - m m )
©© 6

) — | @y

F A ) — SW(X)‘%”

38



Temporal approaches

= |dea: construct a path of signature coefficients.

DY Recurrent network
N S0 5 =
< ©-®-®
—> «Flower »
|2« m m )
® ® @

T — | "0y

> Lai et al. (2017) and Liu et al. (2017): writer recognition.
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= How does it perform compared to traditional functional linear
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= How should we choose the order of truncation?
= How does it perform compared to traditional functional linear
models ?

= Could we find a canonical signature pipeline that would be a
domain-agnostic starting point for practitioners?

39



The signature linear model



Regression model on the signature

» X:[0,1] — R? random path, Y € R random variable.
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Regression model on the signature

» X:[0,1] — R? random path, Y € R random variable.
= Assumption: there exists m* € IN, 8* € R%(™) such that

E[Y|X] = (8*,S" (X)), and Var(Y|X) <o? < cc.

= Goal: estimate m™ and [3*.

40



Regression model on the signature

— m" is a key quantity! Recall that
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Regression model on the signature

— m" is a key quantity! Recall that

6 12 42
62 363 9330
254 3279 335922

Il
~N N =

3 3 3 3
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Estimation of m*

= Data: (X1, Y1),..., (X, Y,) iid.
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Estimation of m*

Data: (X1, Y1),..., (Xp, Ya) iid.
For any m e IN, a > 0,
Bra= {8 R4 |8 < a}.

= Forany meN, 8 € Bnq,

/- 1 : [ m 2
Rm,n(ﬂj) — E Z (\/I - <eD)’ 5 (XI)>) .
i=1
= For any m € I\,
L,(m) = Helgt,(,Rm’n(ﬁ).
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Estimation of m*

Estimator:
m= min(argmin(L,,(m) + penn(m))).

m

0.08 —— loss

—— penalization
—— sum

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
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Additional assumptions:

(Ha) B* € B o
(Hk) There exists Ky > 0 and Kx > 0 such that almost surely

Y] < Ky and || X]|1var < Kx.

a4



Theorem
Let Kpen >0,0< p < 3, and

pen,(m) = Kpenn™ ?+/sq(m).
Under the assumptions (H,,) and (Hk), for any n > ny,

P(m# m*) < Giexp (—Gn' =),

where ng, C; and G, are explicit constants.
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Theorem
Let Kpen >0,0< p < 3, and

pen,(m) = Kpenn™ ?+/sq(m).
Under the assumptions (H,,) and (Hk), for any n > ny,

P(m=+# m") < Crexp (—C2n1_2”) ,

where ng, C; and G, are explicit constants.

Corollary
m converges almost surely towards m*.

45



We can then estimate 8* by

} = argmin Rm,n(ﬂ)?
BEBs, o

46



We can then estimate 8* by

3 = argmin R, »(5),
BEB,

and show that

E((5,5700) - (7, 5™ (%)) = 0(Z=).
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Functional linear model

= |n the case d = 1,

1
Y=a +/ X(0)3(1)dt + e,
0
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Functional linear model

= |In the case d = 1,
1
Y:a+/ X(t)5(t)dt + e,
0

= Basis expansion:

K K
B(t) = Z bk‘bk(t); Xi(t) = Z C,'k(,bk(f),
k=1 k=1
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Functional linear model

In the case d = 1,

Y= a+/1 X(1)5(t)dt + e,
0

Basis expansion:

K K
B(t) = Z bko(t), Xi(t) = Z cikPk(t),
k=1 k=1

Back to the multivariate case: estimate the bys.

v

Choice for ¢1,...,¢x? Splines, monomials, Fourier basis... or
functional principal components of the Xs.
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Functional linear model

In the case d = 1,

Y= a+/1 X(1)5(t)dt + e,
0

Basis expansion:

K K
B(t) = Z bko(t), Xi(t) = Z cikPk(t),
k=1 k=1

Back to the multivariate case: estimate the bys.

v

Choice for ¢1,...,¢x? Splines, monomials, Fourier basis... or
functional principal components of the Xs.

> If d > 27 Treat each coordinate independently.

a7



Dimension study

= Gaussian processes covariates: or any t € [0,1], 1 < /i< n,
1< k<d,

Xf(t = O[f(t"‘ £ft, 1 < k < dv te [07 1]7
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Dimension study

= Gaussian processes covariates: or any t € [0,1], 1 < /i< n,
1< k<d,

Xf(t = Olf(t"‘ £ft, 1 < k < dv te [07 1]7

= ¢Kis a Gaussian process with exponential covariance matrix.

= Response is the norm of the trend: Y; = |||

(] 0z 04 06 08 10
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Dimension

Test MSE

(=]
=

0.4

M iy

i

Model
N Signature
I B-Spline
N Fourier
I PCR
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Electricity consumption

= Electricity consumption of 370 clients, recorded every 15min from
2011 to 2014.
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Electricity consumption

0.0200
00175
0.0150
00125
u Model
= 00100 BN Signature
E I B-Spline
B Fourier
0.0075 = PCR
0.0050 * ‘ ﬁ
0.0025 *
0.0000

1 5 10 15 20
Mumber of clients
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A generalized signature method
for multivariate time series
classification



James Morrill Patrick Kidger Terry Lyons
UNIVERSITY OF UNIVERSITY OF UNIVERSITY OF
OXFORD OXFORD OXFORD
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Overview

= Goal: systematic comparison of the different variations of the
signature method.
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Overview

= Goal: systematic comparison of the different variations of the
signature method.

= Empirical study over 26 datasets of time series classification.

= Define a generalised signature method as a framework to capture all
these variations.

= Give practitioners some simple, domain-agnostic guidelines for a first
signature algorithm.
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Framework

= Input: a sequence x € S(RY), where

S(RY) = {(x1,...,%,) | x; € RY n € N}.

Racketsports dataset A sample x with d =6, n = 30
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Framework

= Input: a sequence x € S(RY), where
SR = {(x1,...,%) | x; € RY, n € N}.

= Output: alabel ye {1,...,q}.
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Framework

> For some e, p € N, an augmentation is a map
¢ =(¢%,...,0P): S(RY) — S(R®)".
> For some g € N, a window is a map
W: S(R®) — S(R®)™.

> Signature or logsignature transform: S.

> Rescaling operation ppost OF Ppre.

Feature set
Yij = (ppost oSmo Ppre © W o “l)(x)'
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Framework

> For some e, p € N, an augmentation is a map

O = (()l,...,wp): S(Rd) — S(Re)p.



Augmentations

= Time augmentation

¢t(x) = ((tlaX1)7 LRRE (thn)) € S(Rd+1)'
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Augmentations

= Time augmentation

¢t(x) = ((tlaX1)7 coog (thn)) € S(Rd+1)'

00 02 04 08 08 10 00 02 04 08 08 1.0

Sample x € S(R?) Augmented path ¢(x) € S(R")
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Augmentations

= Time augmentation

¢t(x) = ((tlaX1)7 coog (thn)) € S(Rd+1)'

00 02 04 08 08 1.0

oo 02 04 06 08 10

Sample x € S(R?) Augmented path ¢(x) € S(R")

> Sensitivity to parametrization and ensures signature uniqueness.
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Augmentations

= Lead-lag augmentation

d(x) = ((x1, %), (%2, x1), (%2, %2); - - -, (Xn, xn)) € S(R??).
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Augmentations

= Lead-lag augmentation

d(x) = ((x1, %), (%2, x1), (%2, %2); - - -, (Xn, xn)) € S(R??).

00 02 04 06 08 10 0o o2 o4 o8 o8 0

Sample x € S(R®) Augmented path ¢(x) € S(R™?)
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Augmentations

= Lead-lag augmentation

d(x) = ((x1, %), (%2, x1), (%2, %2); - - -, (Xn, xn)) € S(R??).

00 02 04 06 08 10 0o o2 o4 o8 o8 0

Sample x € S(R®) Augmented path ¢(x) € S(R™?)

> Captures the quadratic variation of a process.
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Augmentations

= Basepoint augmentation

d(x) = (0,1, . ..,%,) € S(RY).
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Augmentations

= Basepoint augmentation
¢(X) = (07 X1yoe- 7Xn) € S(Rd)
= Invisibility-reset augmentation

o(x) = ((1,x1),-- -, (L, xa—1), (1, %n), (0, xa), (0,0)) € S(R¥H1).
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Augmentations

= Basepoint augmentation
¢(X) = (07 X1yoe- 7Xn) € S(Rd)
= Invisibility-reset augmentation

o(x) = ((1,x1),-- -, (L, xa—1), (1, %n), (0, xa), (0,0)) € S(R¥H1).

> Sensitivity to translations.
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Framework

> For some g € N, a window is a map

W: S(R®) — S(R®)".



72
2
(=]
T
£
S

Global window

R*),

(

W(x)=(x) €S

=
5
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Windows

= Sliding window

W(X) = (X1,6, X1, 1105 X211 21105 - - -) € S(S(R®)),
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Windows

= Expanding window

W(X) = (X17£,x1’/+lvx]_’2/+(, .. ) S S(S(Re))
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72
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= Dyadic window

., WA(x)) € S(S(R?))".

W(x) = (WA(x), ..

64



Framework

> Signature or logsignature transform: S.



Framework

= Signature transform

S™(x) = (1, X, X%, X™).
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Framework

= Signature transform
S™(x) = (1, X, X%, X™).

= Logsignature transform log(S™(x)), where for any a € T((RY)),

1)k
log(a) = Z ( ;) (1 —a)®%

k>0
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Framework

= Signature transform
S™(x) = (1, X, X%, X™).

= Logsignature transform log(S™(x)), where for any a € T((RY)),

1)k
log(a) = Z ( ;) (1 —a)®%

k>0

> Same information and logsignature less dimensional but no linear
approximation property.
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Signature versus logsignature

Table 1: Typical dimensions of 5" (x) and log(S5™(x)).

- 2 /2 3/3 6/6
= 6/3 12/6 42 /21

62 /14 363/80 9330/ 1960
254 / 41 3279 / 508 335922 / 49685

3 3 3 3
Il
~N N
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Empirical study methodology

= 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.
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Empirical study methodology

= 26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

= Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(S° © ppre 0 Ge)(x).

= Vary each group of options with regards to this baseline.

= 4 classifiers: logistic regression, random forest, GRU, CNN.

— 9984 combinations.
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> Windows:

Sliding ——M——— L Dyadic

Global Expanding
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> Invariance-removing augmentations:

6 5 4 2
Basepoint 4—
Nonpg ——

Invisiblity-reset

Time + Basepoint
Time + Invisibility-reset
Time
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> Other augmentations:

8 7

wn

(=)

Coordinates projection (1) 4

Learnt projection
Multi-headed stream-preserving
Random projection

I— Lead-lag

None
Coordinates projection (3}
Coordinates projection (2}
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> Signature versus logsignature transform:

Signature  Logsignature

Average ranks 1.25 1.75
p-value 0.01
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Canonical signature pipeline

Augmentations, ¢’ o ¢, Window, W7 Transform, SV Stack

Input, x Add time & basepoint Hierarchical dyadic, with j optimised Signature features, with N optimised °
(]

®

Black box
ML classifier

°

[ ]

°
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Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a
random forest classifier, and compare it to benchmark classifiers.
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Canonical signature pipeline

Implement this pipeline on the 30 datasets from the UEA archive, with a
random forest classifier, and compare it to benchmark classifiers.

3 2 1
L '

TapNet 1

DTWI
MLCN

.
\— MUSE

HIVE COTE

DTWD

Signature Pipeline

DTWA

SRSF

> Competitive with ensemble methods (MUSE and HIVE COTE) and
deep neural networks (MLCN and TapNet).
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Conclusion

= Signatures are a flexible tool.
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Conclusion

= Signatures are a flexible tool.
= The combination “signature + generic algorithm” =~ state-of-the-art.
= [Few computing resources and no domain-specific knowledge.

= A lot of open questions and potential applications.
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Thank youl!
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