
Artificial Neural Networks and Kernel Methods

Franck Gabriel, Joint works with Arthur Jacot, Clément Hongler,
François Ged, Berfin Şimşek, Francesco Spadaro.

Chair of Statistical Field Theory, EPFL

DataSig Seminar

23th July 2020

Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods
interact with each other ?

Outline of the talk:

. Introduction to Supervised Learning.

. Neural Networks and Neural Tangent Kernel.

. Theoretical and Practical Consequences.

. Extreme Learning and Regularized Kernel Methods.

. Kernel Method Generalization from the training set.

Answer: Deep connections and interplay between Neural Networks and Kernel Methods.

Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods
interact with each other ?

Outline of the talk:

. Introduction to Supervised Learning.

. Neural Networks and Neural Tangent Kernel.

. Theoretical and Practical Consequences.

. Extreme Learning and Regularized Kernel Methods.

. Kernel Method Generalization from the training set.

Answer: Deep connections and interplay between Neural Networks and Kernel Methods.

Introduction to Supervised Learning

Abstraction and the Four Main Questions

Ideal Goal: to predict
e.g. : age of a person in a picture

↓
Parameterized family training part

←−
Realistic Goal : train data

of functions : (fθ)θ∈RP −→ ↗ e.g. : "few" labelled pictures
optimization : θ∗

| ↘
| Existence is not enough,
↓ we want to find it.

Generalization
You hope that the ideal goal is achieved

Does it learn ? How does it learn ? What does it learn ? Is it useful ?
Training error (fθt)t≥0 fθ∗ Generalization error

Abstraction and the Four Main Questions

Ideal Goal: to predict
e.g. : age of a person in a picture

↓
Parameterized family training part

←−
Realistic Goal : train data

of functions : (fθ)θ∈RP −→ ↗ e.g. : "few" labelled pictures
optimization : θ∗

| ↘
| Existence is not enough,
↓ we want to find it.

Generalization
You hope that the ideal goal is achieved

Does it learn ? How does it learn ? What does it learn ? Is it useful ?
Training error (fθt)t≥0 fθ∗ Generalization error

General Setup: Regression, Predict f ∗ : Rn0 → Rnout

Always assume nout = 1, generalizable to nout > 1.

Goal:

.Ideal: ∀x , fθ(x) ∼ f ∗(x),

.Proxy: Functional Cost, e.g. M.S.E

C(f) =
1
2

∫
(f (x)− f ∗(x))2 dµ(x),

.Dataset: (xi , yi := f ∗(xi))i=1,...,N ,

.Cost function : Cost ∼ 0⇐⇒Goal
achieved, e.g.

CN(f) =
1

2N

N∑
i=1

(f (xi)− yi)
2
,

Model:

.Parameterization:

F : θ ∈ RP → F ,

.Parameters Cost Function:

C = CN ◦ F ,

CN is often convex, F can be not linear
⇒ the cost C might be non convex.

Problem : Minimize C with an explicit algorithm: arg min
θ

C(θ).

General Setup: Regression, Predict f ∗ : Rn0 → Rnout

Always assume nout = 1, generalizable to nout > 1.

Goal:

.Ideal: ∀x , fθ(x) ∼ f ∗(x),

.Proxy: Functional Cost, e.g. M.S.E

C(f) =
1
2

∫
(f (x)− f ∗(x))2 dµ(x),

.Dataset: (xi , yi := f ∗(xi))i=1,...,N ,

.Cost function : Cost ∼ 0⇐⇒Goal
achieved, e.g.

CN(f) =
1

2N

N∑
i=1

(f (xi)− yi)
2
,

Model:

.Parameterization:

F : θ ∈ RP → F ,

.Parameters Cost Function:

C = CN ◦ F ,

CN is often convex, F can be not linear
⇒ the cost C might be non convex.

Problem : Minimize C with an explicit algorithm: arg min
θ

C(θ).

General Setup: Regression, Predict f ∗ : Rn0 → Rnout

Always assume nout = 1, generalizable to nout > 1.

Goal:

.Ideal: ∀x , fθ(x) ∼ f ∗(x),

.Proxy: Functional Cost, e.g. M.S.E

C(f) =
1
2

∫
(f (x)− f ∗(x))2 dµ(x),

.Dataset: (xi , yi := f ∗(xi))i=1,...,N ,

.Cost function : Cost ∼ 0⇐⇒Goal
achieved, e.g.

CN(f) =
1

2N

N∑
i=1

(f (xi)− yi)
2
,

Model:

.Parameterization:

F : θ ∈ RP → F ,

.Parameters Cost Function:

C = CN ◦ F ,

CN is often convex, F can be not linear
⇒ the cost C might be non convex.

Problem : Minimize C with an explicit algorithm: arg min
θ

C(θ).

Motivation: Two competing spaces of functions
Kernel methods
. (H, 〈〉H) Hilbert space of real valued
functions, evaluation on x continuous:

f (x) = 〈f ,Kx〉H .
The kernel K (x , y) = Kx (y) satisfies:

1. Symmetric K (x , y) = K (y , x),
2. Matrices (K (xi , xj))i,j are positive

semidefinite.
. Find f ∗ minimal norm in H such that
f (xi) = yi (or MSE+λ ‖f‖2

H , λ % 0).
. Representer theorem: f ∗ of the form

fθ(·) =
N∑

i=1

θiK (xi , ·).

. Solution: θ∗ = K (X ,X)−1Y .

. Ridgeless Kernel Regression:
fθ∗(·) =

∑N
i=1 θ

∗
i K (xi , ·).

Fully connected Artificial Neural
Networks
. A parameterization of a dense space of
functions:
fθ : Rn0 →

A1

Rn1 →
σ

Rn1 →
A2

Rn2 →
σ

Rn2 →

. . .RnL−1 →
σ

RnL−1 →
AL

Rnout

with:

1. Ai : Rni−1 → Rni an affine function
(the parameters),

2. σ the pointwise application of a
non-linearity σ : R→ R.

. Find θ∗ which minimizes the cost C.

. Gradient descent.

. Beliefs : Gradient descent will be stuck
in good minimum.

Motivation: Two competing spaces of functions
Kernel methods
. (H, 〈〉H) Hilbert space of real valued
functions, evaluation on x continuous:

f (x) = 〈f ,Kx〉H .
The kernel K (x , y) = Kx (y) satisfies:

1. Symmetric K (x , y) = K (y , x),
2. Matrices (K (xi , xj))i,j are positive

semidefinite.
. Find f ∗ minimal norm in H such that
f (xi) = yi (or MSE+λ ‖f‖2

H , λ % 0).
. Representer theorem: f ∗ of the form

fθ(·) =
N∑

i=1

θiK (xi , ·).

. Solution: θ∗ = K (X ,X)−1Y .

. Ridgeless Kernel Regression:
fθ∗(·) =

∑N
i=1 θ

∗
i K (xi , ·).

Fully connected Artificial Neural
Networks
. A parameterization of a dense space of
functions:
fθ : Rn0 →

A1

Rn1 →
σ

Rn1 →
A2

Rn2 →
σ

Rn2 →

. . .RnL−1 →
σ

RnL−1 →
AL

Rnout

with:

1. Ai : Rni−1 → Rni an affine function
(the parameters),

2. σ the pointwise application of a
non-linearity σ : R→ R.

. Find θ∗ which minimizes the cost C.

. Gradient descent.

. Beliefs : Gradient descent will be stuck
in good minimum.

Questions and answers

Are they so different?

1. Infinite Width Neural Network = Kernel Method
2. Infinite Width Neural Network with finite last hidden layer ∼ Kernel Method with

Regularization

Can Kernel Method Theory give us a better insight on A.N.N.?

1. It allows us to answer the Four Main Questions for Infinite Width Neural Network:
does it learn ? How does it learn ? What does it learn ? Does it generalize ?

2. Better insight into the architectural design of A.N.Ns.

Neural Networks and Neural Tangent Kernel

Main result: take away

Theorem (Jacot, Gabriel, Hongler, NeuRIPS 2018)

Gradient Descent Learning for Infinite Width Limit Neural Networks
‖

Kernel Method for the Neural Tangent Kernel (N.T.K.)

Illustration

Illustration

Setup: Fully Connected Neural Networks
A Fully Connected Neural Network:

I Non linearity: σ : R→ R, e.g.
ReLU(x) = max(0, x). (Lipschitz,
twice differentiable nonlinearity
function for our theorem),

I Number of hidden layers: L− 1,
I Sizes of the layers:

nin = n0,n1, . . . ,nL−1,nL = nout = 1.

f (L)
θ : Rn0 −→

x 7→ 1√
n0

W (0)x+βb(0)
Rn1

σ→ Rn1 −→
x 7→ 1√

n1
W (1)x+βb(1)

. . .
σ→ RnL−1 −→

x 7→ 1√
nL−1

W (L−1)x+βb(L−1)
R

BPtw. application of σ,
BThe parameters : (θp)p∈[P] =

(
W (0),b(0), . . . ,W (L−1),b(L−1)

)
.

Setup: Fully Connected Neural Networks
A Fully Connected Neural Network:

I Non linearity: σ : R→ R, e.g.
ReLU(x) = max(0, x). (Lipschitz,
twice differentiable nonlinearity
function for our theorem),

I Number of hidden layers: L− 1,
I Sizes of the layers:

nin = n0,n1, . . . ,nL−1,nL = nout = 1.

f (L)
θ : Rn0 −→

x 7→ 1√
n0

W (0)x+βb(0)
Rn1

σ→ Rn1 −→
x 7→ 1√

n1
W (1)x+βb(1)

. . .
σ→ RnL−1 −→

x 7→ 1√
nL−1

W (L−1)x+βb(L−1)
R

BPtw. application of σ,
BThe parameters : (θp)p∈[P] =

(
W (0),b(0), . . . ,W (L−1),b(L−1)

)
.

Setup: Fully Connected Neural Networks
A Fully Connected Neural Network:

I Non linearity: σ : R→ R, e.g.
ReLu(x) = x ∨ 0. (Lipschitz, twice
differentiable nonlinearity function
for our theorem),

I Number of hidden layers: L− 1,
I Size of the layers:

nin = n0,n1, . . . ,nL−1,nL = nout = 1.

Activations α(`). Preactivations α̃(`). Output function fθ(x) = α̃(L)(x)

α̃(`+1)(x) =
1√
n`

W (`)α(`)(x) + βb(`),

α(`+1)(x) = σ
(
α̃(`+1)(x)

)
,

with pointwise application of σ.

Setup: Algorithm, the gradient descent

We implement a first-order algorithm and we want the cost to decrease:

θ → θ + dθ ⇒ C(θ)→ C(θ) + 〈∇C(θ),dθ〉

↪→ dθ ∝ −∇C(θ)

Cost

C = CN ◦ F , i.e.

C(θ) =
1

2N

N∑
i=1

(fθ(xi)− yi)
2

Algorithm

Gradient Descent:

dθ = −∇C(θ)dt ,

Gradient Flow:

∂tθt = −∇C(θt)

Initialization

If (θp)p=1,...P = 0, the gradient
descent gets stuck.
Idea [LeCun/He init.]

(θp)p=1,...P ∼ N (0,1) i.i.d.

Setup: Algorithm, the gradient descent

We implement a first-order algorithm and we want the cost to decrease:

θ → θ + dθ ⇒ C(θ)→ C(θ) + 〈∇C(θ),dθ〉

↪→ dθ ∝ −∇C(θ)

Cost

C = CN ◦ F , i.e.

C(θ) =
1

2N

N∑
i=1

(fθ(xi)− yi)
2

Algorithm

Gradient Descent:

dθ = −∇C(θ)dt ,

Gradient Flow:

∂tθt = −∇C(θt)

Initialization

If (θp)p=1,...P = 0, the gradient
descent gets stuck.
Idea [LeCun/He init.]

(θp)p=1,...P ∼ N (0,1) i.i.d.

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of fθt and not of θt .

Using a new kernel

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

It is random at initialization and evolves with time.

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of fθt and not of θt .

Using a new kernel

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

It is random at initialization and evolves with time.

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of fθt and not of θt .

Using a new kernel

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

It is random at initialization and evolves with time.

NTK and the learning dynamics.

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L−1 hidden layers of width n1, . . .nL−1:
fθ : Rnin → R. During Gradient Descent:

∂t fθt = −∇
Θ

(L)
t
CN ,

where

∇
Θ

(L)
t
CN(x) =

N∑
i=1

Θ
(L)
t (x , xi)

∂CN

∂fθt (xi)
.

Illustration: Dynamics

Proof: Dynamics
Recall that C = CN ◦ F , with CN (f) = c (f (x1), . . . , f (xN)).

I Parameter Space: dθp = − ∂C
∂θp

dt = −
∑N

i=1
∂fθ
∂θp

(xi)
∂CN
∂yi

dt .

I Function Space:

fθ(x)→ fθ+dθ(x) ∼ fθ(x) +
P∑

p=1

dθp
∂fθ
∂θp

(x)

fθ(x)−
N∑

i=1

 P∑
p=1

∂fθ
∂θp

(x)
∂fθ
∂θp

(xi)

 ∂CN

∂f (xi)
dt .

I Neural Tangent Kernel: Θ(L)(x , xi) =
∑P

p=1
∂fθ
∂θp

(x) ∂fθ
∂θp

(xi).

I Dynamics:

∂t fθt (x) = −
N∑

i=1

Θ(L)(x , xi)
∂CN

∂yi
dt = −∇Θ(L)CN .

Proof: Dynamics
Recall that C = CN ◦ F , with CN (f) = c (f (x1), . . . , f (xN)).

I Parameter Space: dθp = − ∂C
∂θp

dt = −
∑N

i=1
∂fθ
∂θp

(xi)
∂CN
∂yi

dt .

I Function Space:

fθ(x)→ fθ+dθ(x) ∼ fθ(x) +
P∑

p=1

dθp
∂fθ
∂θp

(x)

fθ(x)−
N∑

i=1

 P∑
p=1

∂fθ
∂θp

(x)
∂fθ
∂θp

(xi)

 ∂CN

∂f (xi)
dt .

I Neural Tangent Kernel: Θ(L)(x , xi) =
∑P

p=1
∂fθ
∂θp

(x) ∂fθ
∂θp

(xi).

I Dynamics:

∂t fθt (x) = −
N∑

i=1

Θ(L)(x , xi)
∂CN

∂yi
dt = −∇Θ(L)CN .

Proof: Dynamics
Recall that C = CN ◦ F , with CN (f) = c (f (x1), . . . , f (xN)).

I Parameter Space: dθp = − ∂C
∂θp

dt = −
∑N

i=1
∂fθ
∂θp

(xi)
∂CN
∂yi

dt .

I Function Space:

fθ(x)→ fθ+dθ(x) ∼ fθ(x) +
P∑

p=1

dθp
∂fθ
∂θp

(x)

fθ(x)−
N∑

i=1

 P∑
p=1

∂fθ
∂θp

(x)
∂fθ
∂θp

(xi)

 ∂CN

∂f (xi)
dt .

I Neural Tangent Kernel: Θ(L)(x , xi) =
∑P

p=1
∂fθ
∂θp

(x) ∂fθ
∂θp

(xi).

I Dynamics:

∂t fθt (x) = −
N∑

i=1

Θ(L)(x , xi)
∂CN

∂yi
dt = −∇Θ(L)CN .

Proof: Dynamics
Recall that C = CN ◦ F , with CN (f) = c (f (x1), . . . , f (xN)).

I Parameter Space: dθp = − ∂C
∂θp

dt = −
∑N

i=1
∂fθ
∂θp

(xi)
∂CN
∂yi

dt .

I Function Space:

fθ(x)→ fθ+dθ(x) ∼ fθ(x) +
P∑

p=1

dθp
∂fθ
∂θp

(x)

fθ(x)−
N∑

i=1

 P∑
p=1

∂fθ
∂θp

(x)
∂fθ
∂θp

(xi)

 ∂CN

∂f (xi)
dt .

I Neural Tangent Kernel: Θ(L)(x , xi) =
∑P

p=1
∂fθ
∂θp

(x) ∂fθ
∂θp

(xi).

I Dynamics:

∂t fθt (x) = −
N∑

i=1

Θ(L)(x , xi)
∂CN

∂yi
dt = −∇Θ(L)CN .

Main Theorem

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L−1 hidden layers of width n1, . . .nL−1:
fθ : Rnin → R.

1. During Gradient Descent:
∂t fθt = −∇

Θ
(L)
t
CN .

2. When n1, . . . ,nL−1 →∞ sequentially:
I At initialization, fθ0 ∼ N (0,Σ(L)) [Neal 96, de G. Matthews and al 17,18].
I The NTK:

I At initialization, becomes deterministic:

Θ
(L)
t=0 −→ Θ

(L)
t=0,∞.

I Becomes fixed during training: uniformly on t ≤ T∣∣∣Θ(L)
t (x1, x2)−Θ

(L)
t=0,∞(x1, x2)

∣∣∣→ 0.

Limiting dynamics

The limiting trajectory is
∂t fθt = −∇

Θ
(L)
∞
C,

which converges to a global minimum if the cost functional C is convex and lower
bounded and Θ

(L)
∞ is positive definite.

Theorem (Jacot, Gabriel, Hongler 18)

Assume that the data x1, . . . , xN lie on a sphere:
Θ

(L)
∞ is definite positive for any input dimension nin i.i.f. σ is a non polynomial function.

Limiting dynamics

The limiting trajectory is
∂t fθt = −∇

Θ
(L)
∞
C,

which converges to a global minimum if the cost functional C is convex and lower
bounded and Θ

(L)
∞ is positive definite.

Theorem (Jacot, Gabriel, Hongler 18)

Assume that the data x1, . . . , xN lie on a sphere:
Θ

(L)
∞ is definite positive for any input dimension nin i.i.f. σ is a non polynomial function.

General Idea
Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of σ and an affine map.

f (L+1)
θ : Rn0

f (L)
θ−→ RnL σ→ RnL AL−→ R

And use the chain rule.

This intuition holds during:
I inference: i.e. when you evaluate f (L+1)

θ ,

I training: training f (L+1)
θ means training AL and training f (L)

θ with a time dependent cost
C(ALσ(.)).

Main Tools:
I Induction on the number of layers L,
I Law of large number,
I CLT,
I Generalized Grönwall’s inequalities.

General Idea
Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of σ and an affine map.

f (L+1)
θ : Rn0

f (L)
θ−→ RnL σ→ RnL AL−→ R

And use the chain rule.

This intuition holds during:
I inference: i.e. when you evaluate f (L+1)

θ ,

I training: training f (L+1)
θ means training AL and training f (L)

θ with a time dependent cost
C(ALσ(.)).

Main Tools:
I Induction on the number of layers L,
I Law of large number,
I CLT,
I Generalized Grönwall’s inequalities.

General Idea
Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of σ and an affine map.

f (L+1)
θ : Rn0

f (L)
θ−→ RnL σ→ RnL AL−→ R

And use the chain rule.

This intuition holds during:
I inference: i.e. when you evaluate f (L+1)

θ ,

I training: training f (L+1)
θ means training AL and training f (L)

θ with a time dependent cost
C(ALσ(.)).

Main Tools:
I Induction on the number of layers L,
I Law of large number,
I CLT,
I Generalized Grönwall’s inequalities.

Proof: fθ0 ∼ N

Proof: Θ
(L)
t=0 → Θ

(L)
∞ , the inner parameters

Sketch of proof: Θ
(L)
t → Θ

(L)
∞

Generalization: multiple output

Generalize to multi-dimensional output:

I Θ
(L)
k,k ′(x , x

′) =
∑

p=1,...,P
∂fθ,k
∂θp

(x)
∂fθ,k′
∂θp

(x ′).

I ∂t fθt = −∇
Θ

(L)
t
CN with

(
∇

Θ
(L)
t
CN

)
k

=
∑N

i=1
∑nout

k ′=1 Θ
(L)
t,k,k ′(·, xi)

∂CN
∂fθt ,k

′ (xi)
.

Main Features of the Multiple Output Setting:

I At initialization, (fθ0,k)nout
k=1 are i.i.d.

I The limiting NTK is diagonal:(
Θ(L)
∞

)
k,k ′

(x , x ′) =
(

Θ(L)
∞ (x , x ′)

)
δk,k ′ .

I The functions (fθ,k)nout
k=1 evolve independently.

Generalization: multiple output

Generalize to multi-dimensional output:

I Θ
(L)
k,k ′(x , x

′) =
∑

p=1,...,P
∂fθ,k
∂θp

(x)
∂fθ,k′
∂θp

(x ′).

I ∂t fθt = −∇
Θ

(L)
t
CN with

(
∇

Θ
(L)
t
CN

)
k

=
∑N

i=1
∑nout

k ′=1 Θ
(L)
t,k,k ′(·, xi)

∂CN
∂fθt ,k

′ (xi)
.

Main Features of the Multiple Output Setting:

I At initialization, (fθ0,k)nout
k=1 are i.i.d.

I The limiting NTK is diagonal:(
Θ(L)
∞

)
k,k ′

(x , x ′) =
(

Θ(L)
∞ (x , x ′)

)
δk,k ′ .

I The functions (fθ,k)nout
k=1 evolve independently.

Other Generalizations

Since then (May 2018), many generalizations:
I Finite time step, large but finite width, infinite time horizon for M.S.E [Du S. for 2

layers ReLU ∼ NTK (2018)], [Allen-Zhu et al. (2018)], [many papers of Arora S.,
Du S. and al (2019)]

I Lazy training: [Chizat-Bach (2018)], [Lee, Xiao and al. (2019)]
I Taylorised learning [Huang, Yau (2019)] : Neural Tangent Hierarchy, N3 width

enough. Fluctuations(Θ(L)
t=0)∼ P−

1
4 , Fluctuations(Θ(L)

t −Θ
(L)
t=0)∼ P−

1
2 . [Bai and al.

(2020)]
I Other architectures at initialization: Tensor Programs of Greg Yang (2019)
I Other optimization algorithm:

I Momentum [Lee, Xiao and al. (2019)]
I Natural gradient [Rudner, Teh, Wenzel, Gal (2019)]

Theoretical and Practical Consequence on ANN Learning

Reminder

The dynamics of fθt during training is given by:

Finite size Randomness Large limit

↗ Random initial kernel Θ
(L)
t=0 Deterministic

∂t fθt = −∇
Θ

(L)
t
CN , −→ Random evolution of Θ

(L)
t Constant in time

fθ0 ↘ Random initial function fθ0 fθ0 ∼ N
(
0,Σ(L)

)

Answer to the Four Questions: how and what?

General setting

I Dynamics:

∂t fθt (x) = −
∑

xi

Θ(L)(x , xi)
∂CN

∂fθt (xi)

Hence: fθt = f0 +
∑
ϑi,t Θ

(L)(x , xi).
I Final function:

f0 + Kernel method for CN(·+ f0)

MSE

I For MSE, ∂CN
∂fθt (xi)

= fθt (xi)− yi : linear
differential equation.

I On training points, the Gram matrix
yields the speed of convergence.

I The function is Gaussian during training.
I Final function:
fθ∞ = f0 + KRλ=0,(X ,Y)(f

∗ − f0) or

fθ∞ = KRλ=0,(X ,Y) (f∗) + ε,

with noise error term
ε = f0 − KRλ=0,(X ,Y)(f0). [Zhang, Xu
and al (2019)]

Answer to the Four Questions: how and what?

General setting

I Dynamics:

∂t fθt (x) = −
∑

xi

Θ(L)(x , xi)
∂CN

∂fθt (xi)

Hence: fθt = f0 +
∑
ϑi,t Θ

(L)(x , xi).
I Final function:

f0 + Kernel method for CN(·+ f0)

MSE

I For MSE, ∂CN
∂fθt (xi)

= fθt (xi)− yi : linear
differential equation.

I On training points, the Gram matrix
yields the speed of convergence.

I The function is Gaussian during training.
I Final function:
fθ∞ = f0 + KRλ=0,(X ,Y)(f

∗ − f0) or

fθ∞ = KRλ=0,(X ,Y) (f∗) + ε,

with noise error term
ε = f0 − KRλ=0,(X ,Y)(f0). [Zhang, Xu
and al (2019)]

Answer to the Four Questions: train error and generalization?

I Training:

For MSE loss: training loss = 0. In general minimun error loss attained.

I Generalization:
Very large FCNN should generalize as RKHS methods: Rademacher bound should yield

bounds of the form
√

Y Θ−1Y
N for bounded Lip. cost. [Arora, Du and al 2019 - 2 Layer

ReLu and bounded Lip. cost function]

Consequences: Training of large depth networks
Order-Chaos during inference [Daniely and al. 2016] [S.S. Schoenholz and al. 2017]
[Hayou, Doucet, Rousseau 2019]
Depending on the variance of the initialisation as L→∞: Σ(L) → C (order) or
Σ(L) → C1 + C2δx=y (chaos)

Figure: From “On the Impact of the Activation Function on Deep Neural Networks Training” [Hayou
and al]

Consequences: Training of large depth networks
Freeze-Chaos during training [Jacot, Gabriel, Hongler 2019] [Agarwal, Awasthi, Kale 2020]
Depending on the variance of the initialisation:

I Θ(L) → C (order), the bias are two important, difficult to train.
I Θ(L) ∼ CLδx=y (chaos), easier to train, but generalization not good.

Figure: From “Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary
Artifacts” [A. Jacot, F. Gabriel, F. Ged, C. Hongler]

Consequences:Generalization
Function loss is convex : noise in the predictor is bad.

E
[∫

(fθ∞(x)− f ∗(x))2 dµ(x)

]
=

∫
(E (fθ∞(x))− f ∗(x))2 dµ(x)︸ ︷︷ ︸

Bias

+

∫
Var [fθ∞(x)] dµ(x)︸ ︷︷ ︸

Variance

I The noise due to fθ0 can be suppressed: train fθ − fθ0 instead of fθ
I same dynamics + initialization = 0→ Kernel method

I [“Scaling description of generalization with number of parameters in deep learning”,
Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, Biroli, Hongler, Wyart]
Still noise due to fluctuations(Θ

(L)
t=0)∼ P−

1
4 and fluctuations(Θ

(L)
t −Θ

(L)
t=0)∼ P−

1
2

I Fluctuations of fθ∞(x) ∼ P−
1
4 , and Variance ∼ P−

1
2 ,

I If bias is constant in overparameterized regime:

Generalization error ∼ ErrorP=∞ + P−
1
2 .

Double curve descent phenomenon

Extreme Learning and Regularized Kernel Method

Extreme Learning

Extreme Learning = Learning the last layer’s parameters.

B To simplify, we consider no bias (i.e. no
additive parameter) for the last layer, and we
assume that there is no pointwise application
of the non-linearity at the last hidden layer.
B We assume that all hidden layers, except
the last one, are infinite =⇒ f (L−1)

i are i.i.d.
N
(
0,Σ(L−1)

)
.

B We train only the last hidden layer, with a
`2-norm penalization on θ.

Result : This is close to a Kernel Method with kernel Σ(L−1) but with a larger regularisa-
tion.

Implicit Regularization of Finite Sampling of Features

Extreme Learning

Extreme Learning = Learning the last layer’s parameters.

B To simplify, we consider no bias (i.e. no
additive parameter) for the last layer, and we
assume that there is no pointwise application
of the non-linearity at the last hidden layer.
B We assume that all hidden layers, except
the last one, are infinite =⇒ f (L−1)

i are i.i.d.
N
(
0,Σ(L−1)

)
.

B We train only the last hidden layer, with a
`2-norm penalization on θ.

Result : This is close to a Kernel Method with kernel Σ(L−1) but with a larger regularisa-
tion.

Implicit Regularization of Finite Sampling of Features

Rahimi & Recht’s Random Features
fθ : Rnin f−→ RP −→

x→ 1√
P
θx

R

I f is an infinite neural network at initialization (recall: no pointwise application of σ for
the output layer) in particular, f = (fj)P

j=1 i.i.d. G.P. N (0,K).

I The parameters are θ ∈ RP , and we consider N data points (xi , yi)
N
i=1.

I Optimization with λ
N > 0 penalization on the `2-norm of θ.

min
θ

1
N

N∑
i=1

(fθ (xi)− yi)
2 +

λ

N
‖θ‖2

I Closed Formulae: With Fij = 1√
P

fj (xi), optimal parameter: θ̂ =
(
F T F + λIP

)−1 F T y

leads to prediction: ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y and optimal predictor:

f̂ (RF)
λ (x) =

1√
P

P∑
j=1

θ̂j fj (x).

Large number of features

ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y

But:

F
(
F T F + λIP

)−1
F T = FF T (FF T + λIP

)−1

with (
FF T)

i,j =
1
P

∑
k

fk (xi)fk (xj) −→
P→∞

K (xi , xj)

Thus:
ŷ → K (X ,X) [K (X ,X) + λIN]−1 y

and the predictor converge to the K Kernel predictor with ridge λ:

f̂ (RF)
λ (x)→ f̂ (K)

λ (x) := K (x ,X) [K (X ,X) + λIN]−1 y .

R.F. Predictor

0 1 2 3 4 5 6
3

2

1

0

1

2

3

0 1 2 3 4 5 6
3

2

1

0

1

2

3

P = 2, λ = 10−4 P = 4, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

0 1 2 3 4 5 6
3

2

1

0

1

2

3

P = 2, λ = 0.1 P = 4, λ = 0.1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

0 1 2 3 4 5 6
3

2

1

0

1

2

3

P = 10, λ = 10−4 P = 100, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

0 1 2 3 4 5 6
3

2

1

0

1

2

3

P = 10, λ = 0.1 P = 100, λ = 0.1

Finite number of features

ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y , E
[
f̂ (RF)
λ (x)

]
= Σ(L)(x ,X)Σ(L)(X ,X)−1E [Aλ] y

. The matrix Aλ can be studied using the Stieljes transform: 1
P Tr

[(
F T F + λIP

)−1
]

. The matrix F as a special structure: its columns are i.i.d. and Gaussian with cov 1
P K :

F ∼ 1√
P

K 1/2W T

where W is a P × N random matrices with entries i.i.d. standard Gaussian.
. For the matrix F T F :

F T F ∼ 1
P

WKW T ,

whose Stieljes transform can be studied like K
(1

P W T W
)
: product of a Wishart Matrix

and a deterministic matrix, well studied in free probability.

Main result

Theorem (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, ICML 2020)

Even for P < ∞, E
[
f̂ (RF)
λ (x)

]
is close to the Kernel predictor f̂ (K)

λ̃
with a larger “effective

ridge” λ̃(γ, λ) > λ which is the unique solution of

λ̃ = λ+
λ̃

γ

1
N

Tr
(

K (X ,X)
(

K (X ,X) + λ̃
)−1

)
,

where K (X ,X) is the Gram matrix of K .

It is the implicit regularization effect of finite random features sampling.

Effective Ridge and Test Error

0

1

2

3

4

5

6

7

8

10-2 10-1 100 101 102

Te
st

 E
rr

or

10-2 10-1 100 101 102

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Kernel Method Generalization from the training set

Experiments on Structured Data and Finite N.N.
Recent pre-print of J. Paccolata, L. Petrinia, M. Geigera, K. Tylooa, and M. Wyart:
Setting: Classification with hinge Loss c(y , y∗) = (1− yy∗)+, shallow network, labels only
depends on the first coordinate (stripe model), parameters initialized very small (feature
learning regime).
Three phases during learning:

1. Compressing Regime: Parameters evolve independently and tend to align with the

informative subspace.

2. Fitting regime: when a fraction of constraints are satified, the N.N. tries to fit the
labels but the parameters still evolve within the informative subspace.

3. Over-fitting regime.
Question: Is the N.T.K. theory no more interesting ?

Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !

Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !

Question (Open): How does the N.T.K. improves ? How does the Neural Network "knows"
that the kernel needs to evolve, based only on the training points ?

Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !

Question: Can we estimate the generalization error of a kernel method, based only on the
training points ?

K.A.R.E. : the Kernel Alignement Risk Estimator
Consider a Kernel Method for
3 Random i.i.d. training points xi ∼ D in a compact domain Ω
3 Training labels y∗i = f ∗(xi) + εei with ei ∼ N (0,1)

3 Minimizing 1
N

∑N
i=1 (f (xi)− y∗i)2 + λ ‖f‖2

H, i.e.

f̂λ(x) = K (x ,X) [K (X ,X) + λIN]−1 Y ∗

Fact (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, 2020)

We propose the following estimator of the Risk of the Kernel predictor f̂λ with ridge λ :

Ex1,...,xn,x∼D

[(
f̂λ(x)− f ∗(x)

)2
]

+ ε2 ≈
1
N Y ∗

[1
N K (X ,X) + λIN

]−2
Y ∗(

1
N Tr

[(1
N K (X ,X) + λIN

)−1
])2 = K .A.R.E .

A theorem if only the second moments of the observations matters.

Experiments on Real Data

Hyperparameter selection with K.A.R.E.

Conclusion

To Wrap Up the Presentation
Recursive structure of A.N.N. =⇒ attractive properties. The training of A.N.N. using
Gradient Descent with Random Initialization explained using the Neural Tangent Kernel.
In the infinite width limit,

I the N.T.K. is deterministic and constant during training,
I the function follows a Kernel Gradient Descent with fixed kernel,
I the N.T.K. is > 0 and the limiting dynamics converges to a global minimum,
I the final function is of the form Noise + Kernel Method, and by a slight change on the

definition of ANN, it becomes a deterministic Kernel Method.
In the finit width case:

I Fuctuations of the N.T.K. at initialization are the most important and decrease with
P: generalization error decreases as P−

1
2 → double curve descent is expected.

I Last hidden layer finite followed by linear map, last parameters learned with `2 penalty
with ridge λ: again close to a Kernel Method with an other so-called “effective”
ridge λ̃ ≥ λ.

Kernel Method:
I Propose a new estimator for the risk for Kernel Methods: the KARE.

Thank you !

Bibliography

1. NTK: Neural Tangent Kernel: Convergence and Generalization in Neural
Networks, NeuRIPS 2018, arXiv:1806.07572, A. Jacot, F. Gabriel, C. Hongler

2. Generalization: Scaling description of generalization with number of parameters
in deep learning, Journal of Statistical Mechanics: Theory and Experiment,
arXiv:1901.01608, M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli,
G. Biroli, C. Hongler, M. Wyart

3. Order and Chaos: Order and Chaos: NTK views on DNN Normalization,
Checkeraboard and Boundary Artifacts, arXiv:1907.05715, A. Jacot, F. Gabriel, F.
Ged, C. Hongler

4. Implicit Regularization: Implicit Regularization of Random Feature Models, ICML
2020, arXiv:2002.08404, A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel

5. KARE: Kernel Alignment Risk Estimator: Risk Prediction from Training Data,
arXiv:2006.09796, A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel

