Artificial Neural Networks and Kernel Methods

Franck Gabriel, Joint works with Arthur Jacot, Clément Hongler, François Ged, Berfin Şimşek, Francesco Spadaro. Chair of Statistical Field Theory, EPFL

DataSig Seminar

23th July 2020

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods interact with each other ?

Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods interact with each other ?

Outline of the talk:

▷ Introduction to Supervised Learning.

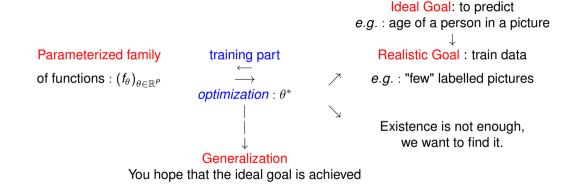
- **D** Neural Networks and Neural Tangent Kernel.
- **>** Theoretical and Practical Consequences.
- **Extreme Learning and Regularized Kernel Methods.**
- ▷ Kernel Method Generalization from the training set.

Answer: Deep connections and interplay between Neural Networks and Kernel Methods.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

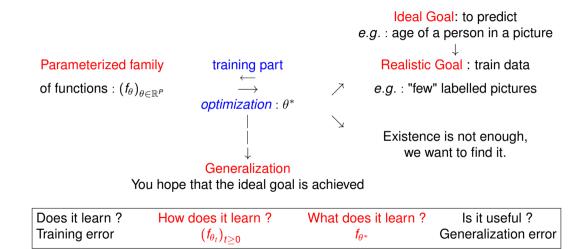
Introduction to Supervised Learning

Abstraction and the Four Main Questions



《曰》 《聞》 《臣》 《臣》 三臣 --

Abstraction and the Four Main Questions



General Setup: Regression, Predict $f^* : \mathbb{R}^{n_0} \to \mathbb{R}^{n_{out}}$

Always assume $n_{out} = 1$, generalizable to $n_{out} > 1$.

Goal:

 \triangleright *Ideal:* $\forall x, f_{\theta}(x) \sim f^*(x),$

⊳ Proxy: Functional Cost, e.g. M.S.E

$$\mathcal{C}(f) = \frac{1}{2} \int \left(f(x) - f^*(x)\right)^2 d\mu(x),$$

$$\triangleright$$
Dataset: $(x_i, y_i := f^*(x_i))_{i=1,...,N}$

 \triangleright Cost function : Cost \sim 0 \iff Goal achieved, e.g.

$$C_N(f) = \frac{1}{2N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

General Setup: Regression, Predict $f^* : \mathbb{R}^{n_0} \to \mathbb{R}^{n_{out}}$

Always assume $n_{out} = 1$, generalizable to $n_{out} > 1$.

Goal:

$$\triangleright$$
Ideal: $\forall x, f_{\theta}(x) \sim f^*(x),$

⊳ Proxy: Functional Cost, e.g. M.S.E

$$C(f) = \frac{1}{2} \int (f(x) - f^*(x))^2 d\mu(x),$$

$$\triangleright$$
Dataset: $(x_i, y_i := f^*(x_i))_{i=1,...,N}$,

 $ightarrow Cost \ function$: Cost $\sim 0 \iff$ Goal achieved, e.g.

$$C_N(f) = \frac{1}{2N} \sum_{i=1}^N (f(x_i) - y_i)^2,$$

Model:

⊳Parameterization:

 $F: \theta \in \mathbb{R}^P \to \mathcal{F},$

⊳Parameters Cost Function:

$$C = C_N \circ F,$$

 C_N is often convex, *F* can be not linear \Rightarrow the cost *C* might be non convex.

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わへで

General Setup: Regression, Predict $f^* : \mathbb{R}^{n_0} \to \mathbb{R}^{n_{out}}$

Always assume $n_{out} = 1$, generalizable to $n_{out} > 1$.

Goal:

$$\triangleright$$
Ideal: $\forall x, f_{\theta}(x) \sim f^*(x),$

⊳ Proxy: Functional Cost, e.g. M.S.E

$$C(f) = \frac{1}{2} \int (f(x) - f^*(x))^2 d\mu(x),$$

$$\triangleright$$
Dataset: $(x_i, y_i := f^*(x_i))_{i=1,...,N}$,

 $ightarrow Cost \ function$: Cost $\sim 0 \iff$ Goal achieved, e.g.

$$C_N(f) = \frac{1}{2N} \sum_{i=1}^{N} (f(x_i) - y_i)^2,$$

Model:

⊳Parameterization:

$$F: \theta \in \mathbb{R}^P \to \mathcal{F},$$

⊳Parameters Cost Function:

$$C = C_N \circ F$$

 C_N is often convex, *F* can be not linear \Rightarrow the cost *C* might be non convex.

イロト イポト イヨト イヨト 三日

Problem : Minimize *C* with an explicit algorithm: $\arg \min_{\theta} C(\theta)$.

Motivation: Two competing spaces of functions

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わへで

Kernel methods

 \triangleright (\mathcal{H} , $\langle \rangle_{\mathcal{H}}$) *Hilbert space* of real valued functions, evaluation on *x* continuous:

$$f(x) = \langle f, K_x \rangle_{\mathcal{H}}$$

The kernel $K(x, y) = K_x(y)$ satisfies:

- 1. Symmetric K(x, y) = K(y, x),
- **2.** Matrices $(K(x_i, x_j))_{i,j}$ are positive semidefinite.

▷ Find f^* minimal norm in \mathcal{H} such that $f(x_i) = y_i$ (or MSE+ $\lambda ||f||^2_{\mathcal{H}}, \lambda \downarrow 0$). ▷ *Representer theorem*: f^* of the form

$$f_{\theta}(\cdot) = \sum_{i=1}^{N} \theta_i K(x_i, \cdot).$$

 \triangleright Solution: $\theta^* = K(X, X)^{-1} Y$.

Ridgeless Kernel Regression:

$$f_{\theta^*}(\cdot) = \sum_{i=1}^N \theta_i^* K(x_i, \cdot)$$

Motivation: Two competing spaces of functions

Kernel methods

 \triangleright (\mathcal{H} , $\langle \rangle_{\mathcal{H}}$) *Hilbert space* of real valued functions, evaluation on *x* continuous:

$$f(x) = \langle f, K_x \rangle_{\mathcal{H}}$$

The kernel $K(x, y) = K_x(y)$ satisfies:

- 1. Symmetric K(x, y) = K(y, x),
- 2. Matrices $(K(x_i, x_j))_{i,j}$ are positive semidefinite.

▷ Find f^* minimal norm in \mathcal{H} such that $f(x_i) = y_i$ (or MSE+ $\lambda ||f||^2_{\mathcal{H}}, \lambda \setminus 0$). ▷ *Representer theorem*: f^* of the form

$$f_{\theta}(\cdot) = \sum_{i=1}^{N} \theta_i K(x_i, \cdot).$$

▷ Solution: $\theta^* = K(X, X)^{-1} Y$.

Ridgeless Kernel Regression:

 $f_{\theta^*}(\cdot) = \sum_{i=1}^N \theta_i^* K(x_i, \cdot).$

Fully connected Artificial Neural Networks

▷ A parameterization of a *dense space of* functions:

$$\begin{split} f_{\theta} &: \mathbb{R}^{n_{0}} \xrightarrow{} \mathbb{R}^{n_{1}} \xrightarrow{\sigma} \mathbb{R}^{n_{1}} \xrightarrow{} \mathbb{R}^{n_{2}} \xrightarrow{\sigma} \mathbb{R}^{n_{2}} \xrightarrow{\sigma} \\ & \dots \mathbb{R}^{n_{L-1}} \xrightarrow{\sigma} \mathbb{R}^{n_{L-1}} \xrightarrow{} \mathbb{R}^{n_{out}} \\ & \text{with:} \end{split}$$

- 1. $A_i : \mathbb{R}^{n_{i-1}} \to \mathbb{R}^{n_i}$ an affine function (the parameters),
- **2.** σ the pointwise application of a non-linearity $\sigma : \mathbb{R} \to \mathbb{R}$.
- \triangleright Find θ^* which minimizes the cost *C*.
- Gradient descent.

Beliefs : Gradient descent will be stuck in good minimum.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへぐ

Questions and answers

Are they so different?

- 1. Infinite Width Neural Network = Kernel Method
- 2. Infinite Width Neural Network with finite last hidden layer \sim Kernel Method with Regularization

Can Kernel Method Theory give us a better insight on A.N.N.?

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

- 1. It allows us to answer the Four Main Questions for Infinite Width Neural Network: does it learn ? How does it learn ? What does it learn ? Does it generalize ?
- 2. Better insight into the architectural design of A.N.Ns.

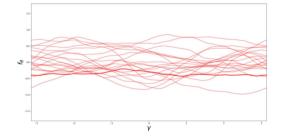
Neural Networks and Neural Tangent Kernel

Theorem (Jacot, Gabriel, Hongler, NeuRIPS 2018)

Gradient Descent Learning for Infinite Width Limit Neural Networks

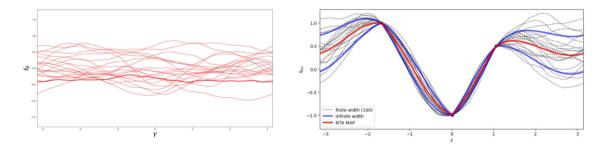
◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ ― 臣 … のへで

Illustration



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Illustration

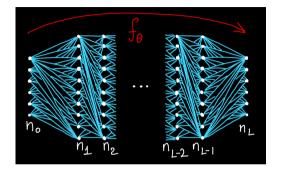


Setup: Fully Connected Neural Networks

A Fully Connected Neural Network:

- Non linearity: σ : ℝ → ℝ, e.g. ReLU(x) = max(0, x). (Lipschitz, twice differentiable nonlinearity function for our theorem),
- Number of hidden layers: L 1,
- Sizes of the layers:

$$n_{in} = n_0, n_1, \ldots, n_{L-1}, n_L = n_{out} = 1.$$

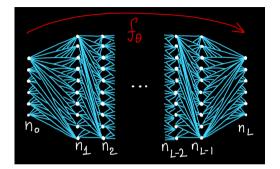


Setup: Fully Connected Neural Networks

A Fully Connected Neural Network:

- Non linearity: σ : ℝ → ℝ, e.g. ReLU(x) = max(0, x). (Lipschitz, twice differentiable nonlinearity function for our theorem),
- **•** Number of hidden layers: L 1,
- Sizes of the layers:

$$n_{in} = n_0, n_1, \ldots, n_{L-1}, n_L = n_{out} = 1.$$



$$f_{\theta}^{(L)}: \mathbb{R}^{n_0} \xrightarrow[x\mapsto \frac{1}{\sqrt{n_0}} W^{(0)}x + \beta b^{(0)} \mathbb{R}^{n_1} \xrightarrow{\sigma} \mathbb{R}^{n_1} \xrightarrow[x\mapsto \frac{1}{\sqrt{n_1}} W^{(1)}x + \beta b^{(1)} \cdots \xrightarrow{\sigma} \mathbb{R}^{n_{L-1}} \xrightarrow[x\mapsto \frac{1}{\sqrt{n_{L-1}}} W^{(L-1)}x + \beta b^{(L-1)} \mathbb{R}^{n_{L-1}}$$

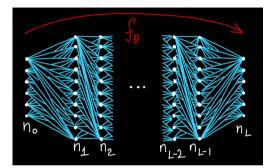
▷Ptw. application of σ , ▷The parameters : $(\theta_p)_{p \in [P]} = (W^{(0)}, b^{(0)}, \dots, W^{(L-1)}, b^{(L-1)}).$

Setup: Fully Connected Neural Networks

A Fully Connected Neural Network:

- ▶ Non linearity: $\sigma : \mathbb{R} \to \mathbb{R}$, e.g. *ReLu*(*x*) = *x* ∨ 0. (Lipschitz, twice differentiable nonlinearity function for our theorem),
- **•** Number of hidden layers: L 1,
- Size of the layers:

 $n_{in} = n_0, n_1, \ldots, n_{L-1}, n_L = n_{out} = 1.$



(日) (월) (문) (문) (문)

Activations $\alpha^{(\ell)}$. Preactivations $\tilde{\alpha}^{(\ell)}$. Output function $f_{\theta}(x) = \tilde{\alpha}^{(L)}(x)$

$$\begin{split} \tilde{\alpha}^{(\ell+1)}(x) &= \frac{1}{\sqrt{n_{\ell}}} W^{(\ell)} \alpha^{(\ell)}(x) + \beta b^{(\ell)}, \\ \alpha^{(\ell+1)}(x) &= \sigma \left(\tilde{\alpha}^{(\ell+1)}(x) \right), \end{split}$$

with pointwise application of σ .

Setup: Algorithm, the gradient descent

We implement a *first-order algorithm* and we want the cost to decrease:

$$eta
ightarrow heta
ightarrow eta
ightarrow eta
ho
ightarrow eta
ho (heta)
ightarrow eta
ho (heta)
ightarrow eta
ho (heta)
ho ($$

 \hookrightarrow $d\theta \propto -\nabla C(\theta)$

Setup: Algorithm, the gradient descent

We implement a *first-order algorithm* and we want the cost to decrease:

$$eta
ightarrow heta
ightarrow eta
ightarrow eta
ho
ightarrow eta (heta)
ightarrow eta ($$

$$\hookrightarrow$$
 $d\theta \propto -\nabla C(\theta)$

Cost

Algorithm

Initialization

 $C = C_N \circ F$, i.e.

$$C(heta) = rac{1}{2N}\sum_{i=1}^{N}\left(f_{ heta}(x_i) - y_i
ight)^2$$

Gradient Descent:

$$d\theta = -\nabla C(\theta) dt,$$

Gradient Flow:

 $\partial_t \theta_t = -\nabla C(\theta_t)$

If $(\theta_p)_{p=1,...P} = 0$, the gradient descent gets stuck. Idea [LeCun/He init.]

$$(\theta_{P})_{P=1,\ldots P} \sim \mathcal{N}(0,1)$$
 i.i.d.

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of f_{θ_t} and not of θ_t .

Using a new kernel

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of f_{θ_t} and not of θ_t .

Using a new kernel

The Neural Tangent Kernel

$$\Theta^{(L)}(x_1,x_2) = \sum_{\rho=1}^{P} \frac{\partial f_{\theta}}{\partial \theta_{\rho}}(x_1) \frac{\partial f_{\theta}}{\partial \theta_{\rho}}(x_2) = \langle \nabla_{\theta} f_{\theta}(x_1), \nabla_{\theta} f_{\theta}(x_2) \rangle \,.$$

New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of f_{θ_t} and not of θ_t .

Using a new kernel

The Neural Tangent Kernel

$$\Theta^{(L)}(x_1, x_2) = \sum_{p=1}^{P} \frac{\partial f_{\theta}}{\partial \theta_p}(x_1) \frac{\partial f_{\theta}}{\partial \theta_p}(x_2) = \langle \nabla_{\theta} f_{\theta}(x_1), \nabla_{\theta} f_{\theta}(x_2) \rangle \,.$$

It is random at initialization and evolves with time.

NTK and the learning dynamics.

The Neural Tangent Kernel

$$\Theta^{(L)}(x_1,x_2) = \sum_{p=1}^{P} \frac{\partial f_{\theta}}{\partial \theta_p}(x_1) \frac{\partial f_{\theta}}{\partial \theta_p}(x_2) = \langle \nabla_{\theta} f_{\theta}(x_1), \nabla_{\theta} f_{\theta}(x_2) \rangle.$$

Theorem (Jacot, Gabriel, Hongler 18)

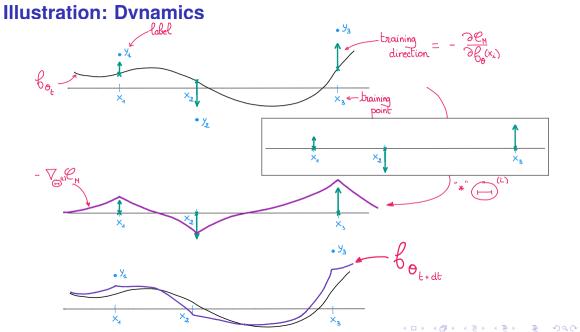
Consider a Fully Connected Neural Network with L-1 hidden layers of width n_1, \ldots, n_{L-1} : $f_{\theta} : \mathbb{R}^{n_{in}} \to \mathbb{R}$. During Gradient Descent:

$$\partial_t f_{\theta_t} = -\nabla_{\Theta_t^{(L)}} \mathcal{C}_N,$$

where

$$abla_{\Theta_t^{(L)}}\mathcal{C}_N(x) = \sum_{i=1}^N \Theta_t^{(L)}(x,x_i) rac{\partial \mathcal{C}_N}{\partial f_{ heta_t}(x_i)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Recall that $C = C_N \circ F$, with $C_N(f) = c(f(x_1), \ldots, f(x_N))$.

► Parameter Space:
$$d\theta_p = -\frac{\partial C}{\partial \theta_p} dt = -\sum_{i=1}^{N} \frac{\partial f_{\theta}}{\partial \theta_p} (x_i) \frac{\partial C_N}{\partial y_i} dt.$$

Recall that $C = C_N \circ F$, with $C_N(f) = c(f(x_1), \ldots, f(x_N))$.

► Parameter Space: $d\theta_{\rho} = -\frac{\partial C}{\partial \theta_{\rho}} dt = -\sum_{i=1}^{N} \frac{\partial f_{\theta}}{\partial \theta_{\rho}}(x_i) \frac{\partial C_N}{\partial y_i} dt.$

Function Space:

$$egin{aligned} f_{ heta}(x) & o f_{ heta+d heta}(x) & \sim & f_{ heta}(x) + \sum_{p=1}^{P} d heta_p rac{\partial f_{ heta}}{\partial heta_p}(x) \ & & f_{ heta}(x) - \sum_{i=1}^{N} \left[\sum_{p=1}^{P} rac{\partial f_{ heta}}{\partial heta_p}(x) rac{\partial f_{ heta}}{\partial heta_p}(x_i)
ight] rac{\partial \mathcal{C}_N}{\partial f(x_i)} dt. \end{aligned}$$

Recall that $C = C_N \circ F$, with $C_N(f) = c(f(x_1), \dots, f(x_N))$.

► Parameter Space: $d\theta_{\rho} = -\frac{\partial C}{\partial \theta_{\rho}} dt = -\sum_{i=1}^{N} \frac{\partial f_{\theta}}{\partial \theta_{\rho}}(x_i) \frac{\partial C_N}{\partial y_i} dt.$

Function Space:

$$egin{aligned} f_{ heta}(x) & o f_{ heta+d heta}(x) & \sim & f_{ heta}(x) + \sum_{p=1}^{P} d heta_p rac{\partial f_{ heta}}{\partial heta_p}(x) \ & f_{ heta}(x) - \sum_{i=1}^{N} \left[\sum_{p=1}^{P} rac{\partial f_{ heta}}{\partial heta_p}(x) rac{\partial f_{ heta}}{\partial heta_p}(x_i)
ight] rac{\partial \mathcal{C}_N}{\partial f(x_i)} dt. \end{aligned}$$

► Neural Tangent Kernel: $\Theta^{(L)}(x, x_i) = \sum_{p=1}^{P} \frac{\partial f_{\theta}}{\partial \theta_p}(x) \frac{\partial f_{\theta}}{\partial \theta_p}(x_i).$

Recall that $C = C_N \circ F$, with $C_N(f) = c(f(x_1), \dots, f(x_N))$.

► Parameter Space: $d\theta_{\rho} = -\frac{\partial C}{\partial \theta_{\rho}} dt = -\sum_{i=1}^{N} \frac{\partial f_{\theta}}{\partial \theta_{\rho}}(x_i) \frac{\partial C_N}{\partial y_i} dt.$

Function Space:

$$egin{aligned} f_{ heta}(x) & o & f_{ heta}(x) & \sim & f_{ heta}(x) + \sum_{eta=1}^{eta} d heta_{eta} rac{\partial f_{ heta}}{\partial heta_{eta}}(x) \ & & f_{ heta}(x) - \sum_{i=1}^{N} \left[\sum_{eta=1}^{eta} rac{\partial f_{ heta}}{\partial heta_{eta}}(x) rac{\partial f_{ heta}}{\partial heta_{eta}}(x_i)
ight] rac{\partial \mathcal{C}_N}{\partial f(x_i)} dt. \end{aligned}$$

► Neural Tangent Kernel: $\Theta^{(L)}(x, x_i) = \sum_{p=1}^{P} \frac{\partial f_{\theta}}{\partial \theta_p}(x) \frac{\partial f_{\theta}}{\partial \theta_p}(x_i).$

Dynamics:

$$\partial_t f_{\theta_t}(x) = -\sum_{i=1}^N \Theta^{(L)}(x, x_i) \frac{\partial \mathcal{C}_N}{\partial y_i} dt = -\nabla_{\Theta^{(L)}} \mathcal{C}_N.$$

Main Theorem

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L-1 hidden layers of width n_1, \ldots, n_{L-1} : $f_{\theta} : \mathbb{R}^{n_{in}} \to \mathbb{R}.$

1. During Gradient Descent:

$$\partial_t f_{\theta_t} = -\nabla_{\Theta_t^{(L)}} \mathcal{C}_N.$$

2. When $n_1, \ldots, n_{L-1} \rightarrow \infty$ sequentially:

- At initialization, $f_{\theta_0} \sim \mathcal{N}(0, \Sigma^{(L)})$ [Neal 96, de G. Matthews and al 17,18].
- The NTK:
 - At initialization, becomes <u>deterministic</u>:

$$\Theta_{t=0}^{(L)} \longrightarrow \Theta_{t=0,\infty}^{(L)}.$$

• Becomes **fixed during training**: uniformly on $t \leq T$

$$\left|\Theta_t^{(L)}(x_1,x_2)-\Theta_{t=0,\infty}^{(L)}(x_1,x_2)\right|\to 0.$$

< □ > < 同 > < 臣 > < 臣 > □ = □

Limiting dynamics

The limiting trajectory is

$$\partial_t f_{\theta_t} = -\nabla_{\Theta_{\infty}^{(L)}} \mathcal{C},$$

which **converges to a global minimum** if the cost functional C is convex and lower bounded and $\Theta_{\infty}^{(L)}$ is positive definite.

◆□▶ ◆□▶ ★ □▶ ★ □▶ = 三 のへで

Limiting dynamics

The limiting trajectory is

$$\partial_t f_{\theta_t} = -\nabla_{\Theta_{\infty}^{(L)}} \mathcal{C},$$

which **converges to a global minimum** if the cost functional C is convex and lower bounded and $\Theta_{\infty}^{(L)}$ is positive definite.

Theorem (Jacot, Gabriel, Hongler 18)

Assume that the data x_1, \ldots, x_N lie on a sphere: $\Theta_{\infty}^{(L)}$ is definite positive for any input dimension n_{in} i.i.f. σ is a non polynomial function.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー ・ つへで

General Idea

Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the pointwize application of σ and an affine map.

$$f_{ heta}^{(L+1)}: \mathbb{R}^{n_0} \stackrel{f_{ heta}^{(L)}}{\longrightarrow} \mathbb{R}^{n_L} \stackrel{\sigma}{ o} \mathbb{R}^{n_L} \stackrel{A_L}{\longrightarrow} \mathbb{R}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ = 三 りへで

And use the chain rule.

General Idea

Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the pointwize application of σ and an affine map.

$$f_{ heta}^{(L+1)}: \mathbb{R}^{n_0} \xrightarrow{f_{ heta}^{(L)}} \mathbb{R}^{n_L} \xrightarrow{\sigma} \mathbb{R}^{n_L} \xrightarrow{A_L} \mathbb{R}$$

And use the chain rule.

This intuition holds during:

- **inference:** i.e. when you evaluate $f_{\theta}^{(L+1)}$,
- ► **training:** training $f_{\theta}^{(L+1)}$ means training A_L and training $f_{\theta}^{(L)}$ with a time dependent cost $C(A_L\sigma(.))$.

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

General Idea

Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the pointwize application of σ and an affine map.

$$f_{ heta}^{(L+1)}: \mathbb{R}^{n_0} \xrightarrow{f_{ heta}^{(L)}} \mathbb{R}^{n_L} \xrightarrow{\sigma} \mathbb{R}^{n_L} \xrightarrow{A_L} \mathbb{R}$$

And use the chain rule.

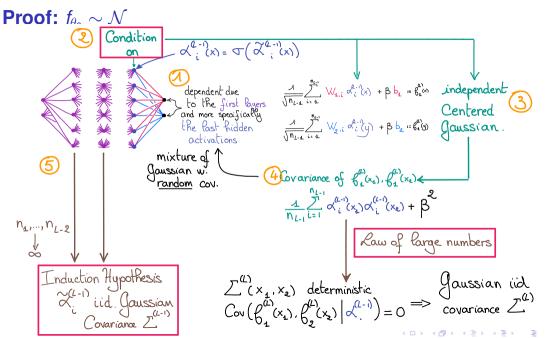
This intuition holds during:

- **inference:** i.e. when you evaluate $f_{\theta}^{(L+1)}$,
- ► **training:** training $f_{\theta}^{(L+1)}$ means training A_L and training $f_{\theta}^{(L)}$ with a time dependent cost $C(A_L\sigma(.))$.

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

Main Tools:

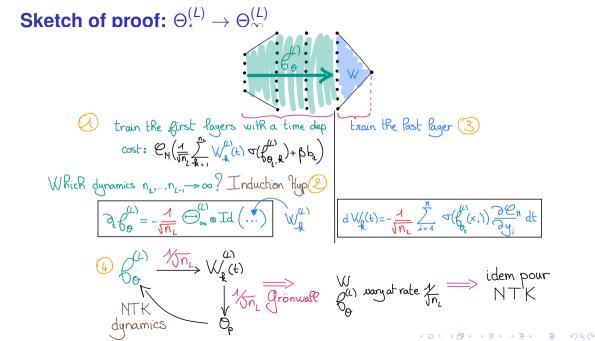
- ▶ Induction on the number of layers *L*,
- Law of large number,
- ► CLT,
- Generalized Grönwall's inequalities.



 $\mathcal{O} \mathcal{O} \mathcal{O}$

Proof: $\Theta_{\star,n}^{(L)} \to \Theta_{\infty}^{(L)}$. the inner parameters

$$\begin{split} \begin{bmatrix} \begin{pmatrix} l+1 \\ \Theta \end{pmatrix} & \begin{pmatrix} l+1 \\ \Theta \end{pmatrix} & \begin{pmatrix} l+1 \\ \overline{M_{L}} \end{pmatrix} \\ & = \underbrace{\frac{1}{\sqrt{n_{L}}}}_{k=1} & \bigvee_{1,k}^{(L)} \\ & = \underbrace{\frac{1}{\sqrt{n_{L}}}}_{k=1} & \bigvee_{1,k}^{(L)} \\ & = \underbrace{\frac{1}{\sqrt{n_{L}}}}_{l,ner} & \begin{pmatrix} l+1 \\ \Theta \end{pmatrix} & \begin{pmatrix} l+$$



Generalization: multiple output

Generalize to multi-dimensional output:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Generalization: multiple output

Generalize to multi-dimensional output:

$$\begin{array}{l} \bullet \ \Theta_{k,k'}^{(L)}(x,x') = \sum_{p=1,\ldots,p} \frac{\partial f_{\theta,k}}{\partial \theta_p}(x) \frac{\partial f_{\theta,k'}}{\partial \theta_p}(x'). \\ \bullet \ \partial_t f_{\theta_t} = -\nabla_{\Theta_t^{(L)}} \mathcal{C}_N \text{ with } \left(\nabla_{\Theta_t^{(L)}} \mathcal{C}_N\right)_k = \sum_{i=1}^N \sum_{k'=1}^{n_{out}} \Theta_{t,k,k'}^{(L)}(\cdot,x_i) \frac{\partial \mathcal{C}_N}{\partial f_{\theta_t,k'}(x_i)}. \end{array}$$

Main Features of the Multiple Output Setting:

- At initialization, $(f_{\theta_0,k})_{k=1}^{n_{out}}$ are i.i.d.
- ► The limiting NTK is **diagonal**:

$$\left(\Theta_{\infty}^{(L)}\right)_{k,k'}(\boldsymbol{x},\boldsymbol{x}') = \left(\Theta_{\infty}^{(L)}(\boldsymbol{x},\boldsymbol{x}')\right)\delta_{k,k'}.$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

• The functions $(f_{\theta,k})_{k=1}^{n_{out}}$ evolve independently.

Other Generalizations

Since then (May 2018), many generalizations:

- Finite time step, large but finite width, infinite time horizon for M.S.E [Du S. for 2 layers ReLU ~ NTK (2018)], [Allen-Zhu et al. (2018)], [many papers of Arora S., Du S. and al (2019)]
- Lazy training: [Chizat-Bach (2018)], [Lee, Xiao and al. (2019)]
- ► Taylorised learning [Huang, Yau (2019)] : Neural Tangent Hierarchy, N³ width enough. Fluctuations(⊖^(L)_{t=0})∼ P^{-1/4}, Fluctuations(⊖^(L)_{t=0})∼ P^{-1/2}. [Bai and al. (2020)]

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わへで

- Other architectures at initialization: Tensor Programs of Greg Yang (2019)
- Other optimization algorithm:
 - Momentum [Lee, Xiao and al. (2019)]
 - Natural gradient [Rudner, Teh, Wenzel, Gal (2019)]

Theoretical and Practical Consequence on ANN Learning

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Reminder

The dynamics of f_{θ_t} during training is given by:

Finite sizeRandomnessLarge limit $\partial_t f_{\theta_t} = -\nabla_{\Theta_t^{(L)}} \mathcal{C}_N, \quad \xrightarrow{}$ Random initial kernel $\Theta_{t=0}^{(L)}$ Deterministic $\partial_t f_{\theta_0}$ \searrow Random evolution of $\Theta_t^{(L)}$ Constant in time f_{θ_0} \searrow Random initial function f_{θ_0} $f_{\theta_0} \sim \mathcal{N}(0, \Sigma^{(L)})$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

Answer to the Four Questions: how and what?

General setting

Dynamics:

$$\partial_t f_{ heta_t}(x) = -\sum_{x_i} \Theta^{(L)}(x, x_i) rac{\partial \mathcal{C}_N}{\partial f_{ heta_t}(x_i)}$$

Hence: $f_{\theta_t} = f_0 + \sum \vartheta_{i,t} \Theta^{(L)}(x, x_i)$.

Final function:

 f_0 + Kernel method for $C_N(\cdot + f_0)$

Answer to the Four Questions: how and what?

General setting

Dynamics:

$$\partial_t f_{\theta_t}(x) = -\sum_{x_i} \Theta^{(L)}(x, x_i) \frac{\partial \mathcal{C}_N}{\partial f_{\theta_t}(x_i)}$$

Hence:
$$f_{\theta_t} = f_0 + \sum \vartheta_{i,t} \Theta^{(L)}(x, x_i)$$
.

Final function:

 f_0 + Kernel method for $C_N(\cdot + f_0)$

MSE

- For MSE, ∂*f*_{θt}(*x*_i) = *f*_{θt}(*x*_i) − *y*_i: linear differential equation.
- On training points, the Gram matrix yields the speed of convergence.
- The function is Gaussian during training.
- Final function:

$$f_{ heta_{\infty}} = f_{\mathsf{0}} + \mathsf{KR}_{\lambda = \mathsf{0}, (X,Y)}(f^* - f_{\mathsf{0}})$$
 or

 $f_{\theta_{\infty}} = \mathsf{KR}_{\lambda=0,(X,Y)}\left(f^{*}\right) + \epsilon,$

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - わへで

with **noise error term** $\epsilon = f_0 - KR_{\lambda=0,(X,Y)}(f_0)$. [Zhang, Xu and al (2019)]

Answer to the Four Questions: train error and generalization?

► Training:

For MSE loss: training loss = 0. In general minimum error loss attained.

Generalization:

Very large FCNN should generalize as RKHS methods: Rademacher bound should yield bounds of the form $\sqrt{\frac{Y\Theta^{-1}Y}{N}}$ for bounded Lip. cost. [Arora, Du and al 2019 - 2 Layer ReLu and bounded Lip. cost function]

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わへで

Consequences: Training of large depth networks

Order-Chaos during inference [Daniely and al. 2016] [S.S. Schoenholz and al. 2017] [Hayou, Doucet, Rousseau 2019] Depending on the variance of the initialisation as $L \to \infty$: $\Sigma^{(L)} \to C$ (order) or $\Sigma^{(L)} \to C_1 + C_2 \delta_{x=y}$ (chaos)

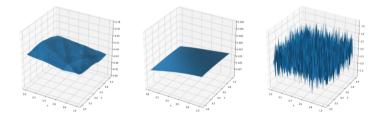


Figure: From "On the Impact of the Activation Function on Deep Neural Networks Training" [Hayou and al]

< 由 > (四) (西) (王) (-)

Consequences: Training of large depth networks

Freeze-Chaos during training [Jacot, Gabriel, Hongler 2019] [Agarwal, Awasthi, Kale 2020] Depending on the variance of the initialisation:

- $\Theta^{(L)} \rightarrow C$ (order), the bias are two important, difficult to train.
- $\Theta^{(L)} \sim C_L \delta_{x=y}$ (chaos), easier to train, but generalization not good.

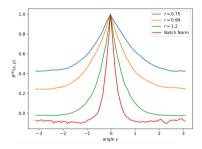


Figure: From "Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts" [A. Jacot, F. Gabriel, F. Ged, C. Hongler]

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Consequences:Generalization

Function loss is convex : noise in the predictor is bad.

$$\mathbb{E}\left[\int \left(f_{\theta_{\infty}}(x) - f^{*}(x)\right)^{2} d\mu(x)\right] = \underbrace{\int \left(\mathbb{E}\left(f_{\theta_{\infty}}(x)\right) - f^{*}(x)\right)^{2} d\mu(x)}_{\text{Bias}} + \underbrace{\int \mathbb{V}\text{ar}\left[f_{\theta_{\infty}}(x)\right] d\mu(x)}_{\text{Variance}}$$

- ▶ The noise due to f_{θ_0} can be suppressed: train $f_{\theta} f_{\theta_0}$ instead of f_{θ}
 - same dynamics + initialization = $0 \rightarrow$ Kernel method
- ["Scaling description of generalization with number of parameters in deep learning", Geiger, Jacot, Spigler, **Gabriel**, Sagun, d'Ascoli, Biroli, Hongler, Wyart] Still noise due to fluctuations $(\Theta_{t=0}^{(L)}) \sim P^{-\frac{1}{4}}$ and fluctuations $(\Theta_{t=0}^{(L)}) \sim P^{-\frac{1}{2}}$
 - Fluctuations of $f_{\theta_{\infty}}(x) \sim P^{-\frac{1}{4}}$, and Variance $\sim P^{-\frac{1}{2}}$,
 - If bias is constant in overparameterized regime:

Generalization error $\sim \text{Error}_{P=\infty} + P^{-\frac{1}{2}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Double curve descent phenomenon

Extreme Learning and Regularized Kernel Method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

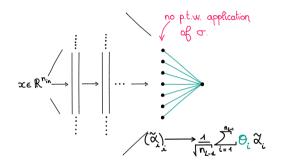
Extreme Learning

Extreme Learning = Learning the last layer's parameters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

Extreme Learning

Extreme Learning = Learning the last layer's parameters.



▷ To simplify, we consider no bias (i.e. no additive parameter) for the last layer, and we assume that there is no pointwise application of the non-linearity at the last hidden layer. ▷ We assume that all hidden layers, except the last one, are infinite $\implies f_i^{(L-1)}$ are i.i.d. $\mathcal{N}(0, \Sigma^{(L-1)})$. ▷ We train only the last hidden layer with a

 \triangleright We train only the last hidden layer, with a ℓ_2 -norm penalization on θ .

Result : This is close to a Kernel Method with kernel $\Sigma^{(L-1)}$ but with a **larger regularisa-**tion.

Implicit Regularization of Finite Sampling of Features

Rahimi & Recht's Random Features

$$f_{\boldsymbol{ heta}}: \mathbb{R}^{n_{in}} \stackrel{f}{\longrightarrow} \mathbb{R}^{P} \underset{x \to rac{1}{\sqrt{P}} \boldsymbol{ heta} x}{\longrightarrow} \mathbb{R}^{P}$$

- ► *f* is an infinite neural network at initialization (recall: no pointwise application of σ for the output layer) in particular, $f = (f_j)_{j=1}^p$ i.i.d. G.P. $\mathcal{N}(0, K)$.
- ► The parameters are $\theta \in \mathbb{R}^{P}$, and we consider *N* data points $(x_i, y_i)_{i=1}^{N}$.
- Optimization with $\frac{\lambda}{N} > 0$ penalization on the ℓ_2 -norm of θ .

$$\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \left(f_{\boldsymbol{\theta}} \left(x_i \right) - y_i \right)^2 + \frac{\lambda}{N} \|\boldsymbol{\theta}\|^2$$

► Closed Formulae: With $F_{ij} = \frac{1}{\sqrt{P}} f_j(x_i)$, optimal parameter: $\hat{\theta} = (F^T F + \lambda I_P)^{-1} F^T y$ leads to prediction: $\hat{y} = \underbrace{F(F^T F + \lambda I_P)^{-1} F^T}_{A_\lambda} y$ and optimal predictor: $\hat{f}_{\lambda}^{(RF)}(x) = \frac{1}{\sqrt{P}} \sum_{i=1}^{P} \hat{\theta}_j f_j(x).$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

Large number of features

$$\hat{y} = \underbrace{F\left(F^{T}F + \lambda I_{P}\right)^{-1}F^{T}}_{A_{\lambda}}y$$

But:

$$F\left(F^{T}F + \lambda I_{P}\right)^{-1}F^{T} = FF^{T}\left(FF^{T} + \lambda I_{P}\right)^{-1}$$

with

$$(FF^{T})_{i,j} = \frac{1}{P} \sum_{k} f_{k}(x_{i}) f_{k}(x_{j}) \xrightarrow[P \to \infty]{} K(x_{i}, x_{j})$$

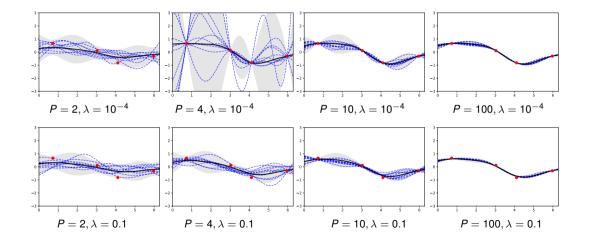
Thus:

$$\hat{\mathbf{y}} \to \mathbf{K}(\mathbf{X}, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \lambda \mathbf{I}_{N}\right]^{-1} \mathbf{y}$$

and the predictor converge to the *K* Kernel predictor with ridge λ :

$$\hat{f}_{\lambda}^{(RF)}(x)
ightarrow \hat{f}_{\lambda}^{(K)}(x) := \mathcal{K}(x,X) \left[\mathcal{K}(X,X) + \lambda I_{N}\right]^{-1} y.$$

R.F. Predictor



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Finite number of features

$$\hat{y} = \underbrace{F\left(F^{T}F + \lambda I_{P}\right)^{-1}F^{T}}_{A_{\lambda}}y, \qquad \mathbb{E}\left[\hat{f}_{\lambda}^{(RF)}(x)\right] = \Sigma^{(L)}(x, X)\Sigma^{(L)}(X, X)^{-1}\mathbb{E}\left[A_{\lambda}\right]y$$

▷ The matrix A_{λ} can be studied using the **Stieljes transform**: $\frac{1}{P}$ Tr $\left[\left(F^{T}F + \lambda I_{P} \right)^{-1} \right]$ ▷ The matrix F as a special structure: its columns are i.i.d. and Gaussian with cov $\frac{1}{P}K$:

$$F\sim rac{1}{\sqrt{P}}K^{1/2}W^{7}$$

where *W* is a $P \times N$ random matrices with entries i.i.d. standard Gaussian. \triangleright For the matrix $F^T F$:

$$F^T F \sim rac{1}{P} W K W^T,$$

whose Stieljes transform can be studied like $K(\frac{1}{P}W^TW)$: product of a **Wishart Matrix** and a **deterministic matrix**, well studied in free probability.

Main result

Theorem (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, ICML 2020) Even for $P < \infty$, $\mathbb{E}\left[\hat{t}_{\lambda}^{(RF)}(x)\right]$ is close to the Kernel predictor $\hat{t}_{\tilde{\lambda}}^{(K)}$ with a larger "effective ridge" $\tilde{\lambda}(\gamma, \lambda) > \lambda$ which is the unique solution of

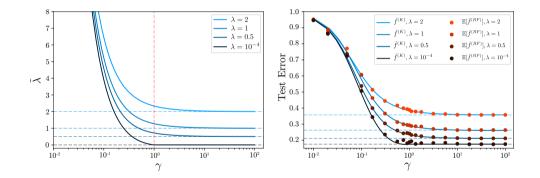
$$ilde{\lambda} = \lambda + rac{ ilde{\lambda}}{\gamma} rac{1}{N} \mathrm{Tr} \left(\mathcal{K}(\mathbf{X}, \mathbf{X}) \left(\mathcal{K}(\mathbf{X}, \mathbf{X}) + ilde{\lambda}
ight)^{-1}
ight),$$

where K(X, X) is the Gram matrix of K.

It is the implicit regularization effect of finite random features sampling.

< 由 > (四) (西) (王) (-)

Effective Ridge and Test Error



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kernel Method Generalization from the training set

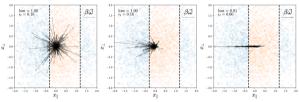
◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Experiments on Structured Data and Finite N.N.

Recent pre-print of J. Paccolata, L. Petrinia, M. Geigera, K. Tylooa, and M. Wyart: **Setting:** Classification with hinge Loss $c(y, y^*) = (1 - yy^*)^+$, shallow network, labels only depends on the first coordinate (stripe model), parameters initialized very small (feature learning regime).

Three phases during learning:

1. Compressing Regime: Parameters evolve independently and tend to align with the



informative subspace.

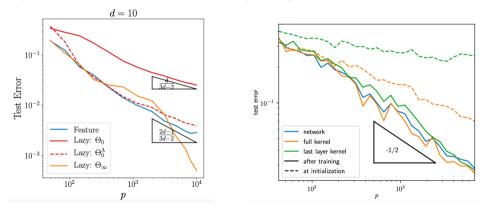
2. Fitting regime: when a fraction of constraints are satified, the N.N. tries to fit the labels but the parameters still evolve within the informative subspace.

3. Over-fitting regime.

Question: Is the N.T.K. theory no more interesting ?

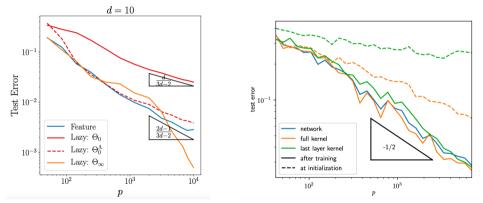
Final NTK v.s. Neural Network

Answer: No, the kernel dynamics is still true but with an evolving kernel and in their experiment the NTK at the end of training is as good as the Neural Network !



Final NTK v.s. Neural Network

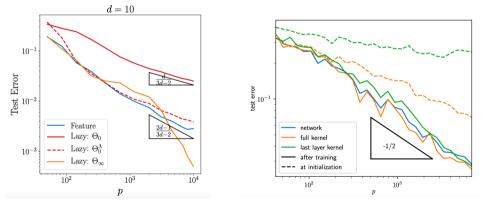
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their experiment the NTK at the end of training is as good as the Neural Network !



Question (Open): How does the N.T.K. improves ? How does the Neural Network "knows" that the kernel needs to evolve, based only on the training points ?

Final NTK v.s. Neural Network

Answer: No, the kernel dynamics is still true but with an evolving kernel and in their experiment the NTK at the end of training is as good as the Neural Network !



Question: Can we estimate the generalization error of a kernel method, based only on the training points ?

K.A.R.E. : the Kernel Alignement Risk Estimator

Consider a Kernel Method for

ightarrow Random i.i.d. training points $x_i \sim D$ in a compact domain Ω

ightarrow Training labels $y_i^* = f^*(x_i) + \epsilon e_i$ with $e_i \sim \mathcal{N}(0, 1)$

ightarrow Minimizing $\frac{1}{N}\sum_{i=1}^{N} (f(x_i) - y_i^*)^2 + \lambda \|f\|_{\mathcal{H}}^2$, i.e.

$$\hat{f}_{\lambda}(x) = K(x, X) \left[K(X, X) + \lambda I_N\right]^{-1} Y^*$$

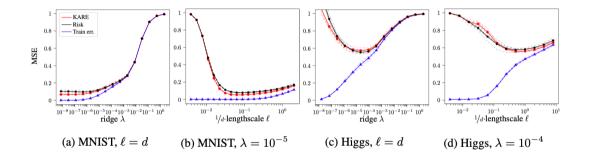
Fact (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, 2020)

We propose the following estimator of the Risk of the Kernel predictor \hat{f}_{λ} with ridge λ :

$$\mathbb{E}_{x_1,\ldots,x_n,x\sim\mathcal{D}}\left[\left(\hat{f}_{\lambda}(x)-f^*(x)\right)^2\right]+\epsilon^2\approx\frac{\frac{1}{N}Y^*\left[\frac{1}{N}K(X,X)+\lambda I_N\right]^{-2}Y^*}{\left(\frac{1}{N}\mathrm{Tr}\left[\left(\frac{1}{N}K(X,X)+\lambda I_N\right)^{-1}\right]\right)^2}=K.A.R.E.$$

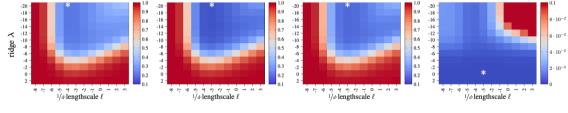
A theorem if only the second moments of the observations matters.

Experiments on Real Data



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hyperparameter selection with K.A.R.E.



(a) Risk

(b) KARE Predictions

(c) Cross Val. Predictions (d) Log-likelihood Estim.

(日) (四) (王) (王) (王) (王)

Conclusion

To Wrap Up the Presentation

Recursive structure of A.N.N. \implies attractive properties. The training of A.N.N. using Gradient Descent with Random Initialization explained using the Neural Tangent Kernel. In the infinite width limit,

- the N.T.K. is deterministic and constant during training,
- the function follows a Kernel Gradient Descent with fixed kernel,
- ▶ the N.T.K. is > 0 and the limiting dynamics converges to a global minimum,
- the final function is of the form Noise + Kernel Method, and by a slight change on the definition of ANN, it becomes a deterministic Kernel Method.

In the finit width case:

- ▶ Fuctuations of the N.T.K. at initialization are the most important **and decrease with** *P*: generalization error decreases as $P^{-\frac{1}{2}} \rightarrow$ double curve descent is expected.
- ► Last hidden layer finite followed by linear map, last parameters learned with ℓ^2 penalty with ridge λ : again close to a Kernel Method with an other so-called "effective" ridge $\tilde{\lambda} \ge \lambda$.

Kernel Method:

Propose a new estimator for the risk for Kernel Methods: the KARE.

Thank you !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Bibliography

- NTK: Neural Tangent Kernel: Convergence and Generalization in Neural Networks, NeuRIPS 2018, arXiv:1806.07572, A. Jacot, F. Gabriel, C. Hongler
- Generalization: Scaling description of generalization with number of parameters in deep learning, Journal of Statistical Mechanics: Theory and Experiment, *arXiv:1901.01608*, M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d'Ascoli, G. Biroli, C. Hongler, M. Wyart
- Order and Chaos: Order and Chaos: NTK views on DNN Normalization, Checkeraboard and Boundary Artifacts, arXiv:1907.05715, A. Jacot, F. Gabriel, F. Ged, C. Hongler
- Implicit Regularization: Implicit Regularization of Random Feature Models, ICML 2020, arXiv:2002.08404, A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel
- 5. KARE: Kernel Alignment Risk Estimator: Risk Prediction from Training Data, *arXiv:2006.09796*, A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel