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Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods
interact with each other ?

Outline of the talk:

. Introduction to Supervised Learning.

. Neural Networks and Neural Tangent Kernel.

. Theoretical and Practical Consequences.

. Extreme Learning and Regularized Kernel Methods.

. Kernel Method Generalization from the training set.

Answer: Deep connections and interplay between Neural Networks and Kernel Methods.
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Introduction to Supervised Learning



Abstraction and the Four Main Questions

Ideal Goal: to predict
e.g. : age of a person in a picture

↓
Parameterized family training part

←−
Realistic Goal : train data

of functions : (fθ)θ∈RP −→ ↗ e.g. : "few" labelled pictures
optimization : θ∗

| ↘
| Existence is not enough,
↓ we want to find it.

Generalization
You hope that the ideal goal is achieved

Does it learn ? How does it learn ? What does it learn ? Is it useful ?
Training error (fθt )t≥0 fθ∗ Generalization error
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General Setup: Regression, Predict f ∗ : Rn0 → Rnout

Always assume nout = 1, generalizable to nout > 1.

Goal:

.Ideal: ∀x , fθ(x) ∼ f ∗(x),

.Proxy: Functional Cost, e.g. M.S.E

C(f ) =
1
2

∫
(f (x)− f ∗(x))2 dµ(x),

.Dataset: (xi , yi := f ∗(xi ))i=1,...,N ,

.Cost function : Cost ∼ 0⇐⇒Goal
achieved, e.g.

CN(f ) =
1

2N

N∑
i=1

(f (xi )− yi )
2
,

Model:

.Parameterization:

F : θ ∈ RP → F ,

.Parameters Cost Function:

C = CN ◦ F ,

CN is often convex, F can be not linear
⇒ the cost C might be non convex.

Problem : Minimize C with an explicit algorithm: arg min
θ

C(θ).
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Motivation: Two competing spaces of functions
Kernel methods
. (H, 〈〉H) Hilbert space of real valued
functions, evaluation on x continuous:

f (x) = 〈f ,Kx〉H .
The kernel K (x , y) = Kx (y) satisfies:

1. Symmetric K (x , y) = K (y , x),
2. Matrices (K (xi , xj ))i,j are positive

semidefinite.
. Find f ∗ minimal norm in H such that
f (xi ) = yi (or MSE+λ ‖f‖2

H , λ % 0).
. Representer theorem: f ∗ of the form

fθ(·) =
N∑

i=1

θiK (xi , ·).

. Solution: θ∗ = K (X ,X )−1Y .

. Ridgeless Kernel Regression:
fθ∗(·) =

∑N
i=1 θ

∗
i K (xi , ·).

Fully connected Artificial Neural
Networks
. A parameterization of a dense space of
functions:
fθ : Rn0 →

A1

Rn1 →
σ

Rn1 →
A2

Rn2 →
σ

Rn2 →

. . .RnL−1 →
σ

RnL−1 →
AL

Rnout

with:

1. Ai : Rni−1 → Rni an affine function
(the parameters),

2. σ the pointwise application of a
non-linearity σ : R→ R.

. Find θ∗ which minimizes the cost C.

. Gradient descent.

. Beliefs : Gradient descent will be stuck
in good minimum.
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Questions and answers

Are they so different?

1. Infinite Width Neural Network = Kernel Method
2. Infinite Width Neural Network with finite last hidden layer ∼ Kernel Method with

Regularization

Can Kernel Method Theory give us a better insight on A.N.N.?

1. It allows us to answer the Four Main Questions for Infinite Width Neural Network:
does it learn ? How does it learn ? What does it learn ? Does it generalize ?

2. Better insight into the architectural design of A.N.Ns.



Neural Networks and Neural Tangent Kernel



Main result: take away

Theorem (Jacot, Gabriel, Hongler, NeuRIPS 2018)

Gradient Descent Learning for Infinite Width Limit Neural Networks
‖

Kernel Method for the Neural Tangent Kernel (N.T.K.)



Illustration



Illustration



Setup: Fully Connected Neural Networks
A Fully Connected Neural Network:

I Non linearity: σ : R→ R, e.g.
ReLU(x) = max(0, x). (Lipschitz,
twice differentiable nonlinearity
function for our theorem),

I Number of hidden layers: L− 1,
I Sizes of the layers:

nin = n0,n1, . . . ,nL−1,nL = nout = 1.

f (L)
θ : Rn0 −→

x 7→ 1√
n0

W (0)x+βb(0)
Rn1

σ→ Rn1 −→
x 7→ 1√

n1
W (1)x+βb(1)

. . .
σ→ RnL−1 −→

x 7→ 1√
nL−1

W (L−1)x+βb(L−1)
R

BPtw. application of σ,
BThe parameters : (θp)p∈[P] =

(
W (0),b(0), . . . ,W (L−1),b(L−1)

)
.
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Setup: Fully Connected Neural Networks
A Fully Connected Neural Network:

I Non linearity: σ : R→ R, e.g.
ReLu(x) = x ∨ 0. (Lipschitz, twice
differentiable nonlinearity function
for our theorem),

I Number of hidden layers: L− 1,
I Size of the layers:

nin = n0,n1, . . . ,nL−1,nL = nout = 1.

Activations α(`). Preactivations α̃(`). Output function fθ(x) = α̃(L)(x)

α̃(`+1)(x) =
1√
n`

W (`)α(`)(x) + βb(`),

α(`+1)(x) = σ
(
α̃(`+1)(x)

)
,

with pointwise application of σ.



Setup: Algorithm, the gradient descent

We implement a first-order algorithm and we want the cost to decrease:

θ → θ + dθ ⇒ C(θ)→ C(θ) + 〈∇C(θ),dθ〉

↪→ dθ ∝ −∇C(θ)

Cost

C = CN ◦ F , i.e.

C(θ) =
1

2N

N∑
i=1

(fθ(xi )− yi )
2

Algorithm

Gradient Descent:

dθ = −∇C(θ)dt ,

Gradient Flow:

∂tθt = −∇C(θt )

Initialization

If (θp)p=1,...P = 0, the gradient
descent gets stuck.
Idea [LeCun/He init.]

(θp)p=1,...P ∼ N (0,1) i.i.d.
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New Object: The N.T.K.

How can we describe the training of N.N?

How?

Study the dynamics of fθt and not of θt .

Using a new kernel

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

It is random at initialization and evolves with time.
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NTK and the learning dynamics.

The Neural Tangent Kernel

Θ(L)(x1, x2) =
P∑

p=1

∂fθ
∂θp

(x1)
∂fθ
∂θp

(x2) = 〈∇θfθ(x1),∇θfθ(x2)〉 .

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L−1 hidden layers of width n1, . . .nL−1:
fθ : Rnin → R. During Gradient Descent:

∂t fθt = −∇
Θ

(L)
t
CN ,

where

∇
Θ

(L)
t
CN(x) =

N∑
i=1

Θ
(L)
t (x , xi )

∂CN

∂fθt (xi )
.



Illustration: Dynamics



Proof: Dynamics
Recall that C = CN ◦ F , with CN (f ) = c (f (x1), . . . , f (xN)).

I Parameter Space: dθp = − ∂C
∂θp

dt = −
∑N

i=1
∂fθ
∂θp

(xi )
∂CN
∂yi

dt .

I Function Space:

fθ(x)→ fθ+dθ(x) ∼ fθ(x) +
P∑

p=1

dθp
∂fθ
∂θp

(x)

fθ(x)−
N∑

i=1

 P∑
p=1

∂fθ
∂θp

(x)
∂fθ
∂θp

(xi )

 ∂CN

∂f (xi )
dt .

I Neural Tangent Kernel: Θ(L)(x , xi ) =
∑P

p=1
∂fθ
∂θp

(x) ∂fθ
∂θp

(xi ).

I Dynamics:

∂t fθt (x) = −
N∑

i=1

Θ(L)(x , xi )
∂CN

∂yi
dt = −∇Θ(L)CN .
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Main Theorem

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L−1 hidden layers of width n1, . . .nL−1:
fθ : Rnin → R.

1. During Gradient Descent:
∂t fθt = −∇

Θ
(L)
t
CN .

2. When n1, . . . ,nL−1 →∞ sequentially:
I At initialization, fθ0 ∼ N (0,Σ(L)) [Neal 96, de G. Matthews and al 17,18].
I The NTK:

I At initialization, becomes deterministic:

Θ
(L)
t=0 −→ Θ

(L)
t=0,∞.

I Becomes fixed during training: uniformly on t ≤ T∣∣∣Θ(L)
t (x1, x2)−Θ

(L)
t=0,∞(x1, x2)

∣∣∣→ 0.



Limiting dynamics

The limiting trajectory is
∂t fθt = −∇

Θ
(L)
∞
C,

which converges to a global minimum if the cost functional C is convex and lower
bounded and Θ

(L)
∞ is positive definite.

Theorem (Jacot, Gabriel, Hongler 18)

Assume that the data x1, . . . , xN lie on a sphere:
Θ

(L)
∞ is definite positive for any input dimension nin i.i.f. σ is a non polynomial function.
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General Idea
Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of σ and an affine map.

f (L+1)
θ : Rn0

f (L)
θ−→ RnL σ→ RnL AL−→ R

And use the chain rule.

This intuition holds during:
I inference: i.e. when you evaluate f (L+1)

θ ,

I training: training f (L+1)
θ means training AL and training f (L)

θ with a time dependent cost
C(ALσ(.)).

Main Tools:
I Induction on the number of layers L,
I Law of large number,
I CLT,
I Generalized Grönwall’s inequalities.
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Proof: fθ0 ∼ N



Proof: Θ
(L)
t=0 → Θ

(L)
∞ , the inner parameters



Sketch of proof: Θ
(L)
t → Θ

(L)
∞



Generalization: multiple output

Generalize to multi-dimensional output:

I Θ
(L)
k,k ′(x , x

′) =
∑

p=1,...,P
∂fθ,k
∂θp

(x)
∂fθ,k′
∂θp

(x ′).

I ∂t fθt = −∇
Θ

(L)
t
CN with

(
∇

Θ
(L)
t
CN

)
k

=
∑N

i=1
∑nout

k ′=1 Θ
(L)
t,k,k ′(·, xi )

∂CN
∂fθt ,k

′ (xi )
.

Main Features of the Multiple Output Setting:

I At initialization, (fθ0,k )nout
k=1 are i.i.d.

I The limiting NTK is diagonal:(
Θ(L)
∞

)
k,k ′

(x , x ′) =
(

Θ(L)
∞ (x , x ′)

)
δk,k ′ .

I The functions (fθ,k )nout
k=1 evolve independently.
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Other Generalizations

Since then (May 2018), many generalizations:
I Finite time step, large but finite width, infinite time horizon for M.S.E [Du S. for 2

layers ReLU ∼ NTK (2018)], [Allen-Zhu et al. (2018)], [many papers of Arora S.,
Du S. and al (2019)]

I Lazy training: [Chizat-Bach (2018)], [Lee, Xiao and al. (2019)]
I Taylorised learning [Huang, Yau (2019)] : Neural Tangent Hierarchy, N3 width

enough. Fluctuations(Θ(L)
t=0)∼ P−

1
4 , Fluctuations(Θ(L)

t −Θ
(L)
t=0)∼ P−

1
2 . [Bai and al.

(2020)]
I Other architectures at initialization: Tensor Programs of Greg Yang (2019)
I Other optimization algorithm:

I Momentum [Lee, Xiao and al. (2019)]
I Natural gradient [Rudner, Teh, Wenzel, Gal (2019)]



Theoretical and Practical Consequence on ANN Learning



Reminder

The dynamics of fθt during training is given by:

Finite size Randomness Large limit

↗ Random initial kernel Θ
(L)
t=0 Deterministic

∂t fθt = −∇
Θ

(L)
t
CN , −→ Random evolution of Θ

(L)
t Constant in time

fθ0 ↘ Random initial function fθ0 fθ0 ∼ N
(
0,Σ(L)

)



Answer to the Four Questions: how and what?

General setting

I Dynamics:

∂t fθt (x) = −
∑

xi

Θ(L)(x , xi )
∂CN

∂fθt (xi )

Hence: fθt = f0 +
∑
ϑi,t Θ

(L)(x , xi ).
I Final function:

f0 + Kernel method for CN(·+ f0)

MSE

I For MSE, ∂CN
∂fθt (xi )

= fθt (xi )− yi : linear
differential equation.

I On training points, the Gram matrix
yields the speed of convergence.

I The function is Gaussian during training.
I Final function:
fθ∞ = f0 + KRλ=0,(X ,Y )(f

∗ − f0) or

fθ∞ = KRλ=0,(X ,Y ) (f∗) + ε,

with noise error term
ε = f0 − KRλ=0,(X ,Y )(f0). [Zhang, Xu
and al (2019)]
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Answer to the Four Questions: train error and generalization?

I Training:

For MSE loss: training loss = 0. In general minimun error loss attained.

I Generalization:
Very large FCNN should generalize as RKHS methods: Rademacher bound should yield

bounds of the form
√

Y Θ−1Y
N for bounded Lip. cost. [Arora, Du and al 2019 - 2 Layer

ReLu and bounded Lip. cost function]



Consequences: Training of large depth networks
Order-Chaos during inference [Daniely and al. 2016] [S.S. Schoenholz and al. 2017]
[Hayou, Doucet, Rousseau 2019]
Depending on the variance of the initialisation as L→∞: Σ(L) → C (order) or
Σ(L) → C1 + C2δx=y (chaos)

Figure: From “On the Impact of the Activation Function on Deep Neural Networks Training” [Hayou
and al]



Consequences: Training of large depth networks
Freeze-Chaos during training [Jacot, Gabriel, Hongler 2019] [Agarwal, Awasthi, Kale 2020]
Depending on the variance of the initialisation:

I Θ(L) → C (order), the bias are two important, difficult to train.
I Θ(L) ∼ CLδx=y (chaos), easier to train, but generalization not good.

Figure: From “Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary
Artifacts” [A. Jacot, F. Gabriel, F. Ged, C. Hongler]



Consequences:Generalization
Function loss is convex : noise in the predictor is bad.

E
[∫

(fθ∞(x)− f ∗(x))2 dµ(x)

]
=

∫
(E (fθ∞(x))− f ∗(x))2 dµ(x)︸ ︷︷ ︸

Bias

+

∫
Var [fθ∞(x)] dµ(x)︸ ︷︷ ︸

Variance

I The noise due to fθ0 can be suppressed: train fθ − fθ0 instead of fθ
I same dynamics + initialization = 0→ Kernel method

I [“Scaling description of generalization with number of parameters in deep learning”,
Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, Biroli, Hongler, Wyart]
Still noise due to fluctuations(Θ

(L)
t=0)∼ P−

1
4 and fluctuations(Θ

(L)
t −Θ

(L)
t=0)∼ P−

1
2

I Fluctuations of fθ∞(x) ∼ P−
1
4 , and Variance ∼ P−

1
2 ,

I If bias is constant in overparameterized regime:

Generalization error ∼ ErrorP=∞ + P−
1
2 .

Double curve descent phenomenon



Extreme Learning and Regularized Kernel Method



Extreme Learning

Extreme Learning = Learning the last layer’s parameters.

B To simplify, we consider no bias (i.e. no
additive parameter) for the last layer, and we
assume that there is no pointwise application
of the non-linearity at the last hidden layer.
B We assume that all hidden layers, except
the last one, are infinite =⇒ f (L−1)

i are i.i.d.
N
(
0,Σ(L−1)

)
.

B We train only the last hidden layer, with a
`2-norm penalization on θ.

Result : This is close to a Kernel Method with kernel Σ(L−1) but with a larger regularisa-
tion.

Implicit Regularization of Finite Sampling of Features
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Rahimi & Recht’s Random Features
fθ : Rnin f−→ RP −→

x→ 1√
P
θx

R

I f is an infinite neural network at initialization (recall: no pointwise application of σ for
the output layer) in particular, f = (fj )P

j=1 i.i.d. G.P. N (0,K ).

I The parameters are θ ∈ RP , and we consider N data points (xi , yi )
N
i=1.

I Optimization with λ
N > 0 penalization on the `2-norm of θ.

min
θ

1
N

N∑
i=1

(fθ (xi )− yi )
2 +

λ

N
‖θ‖2

I Closed Formulae: With Fij = 1√
P

fj (xi ), optimal parameter: θ̂ =
(
F T F + λIP

)−1 F T y

leads to prediction: ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y and optimal predictor:

f̂ (RF )
λ (x) =

1√
P

P∑
j=1

θ̂j fj (x).



Large number of features

ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y

But:

F
(
F T F + λIP

)−1
F T = FF T (FF T + λIP

)−1

with (
FF T )

i,j =
1
P

∑
k

fk (xi )fk (xj ) −→
P→∞

K (xi , xj )

Thus:
ŷ → K (X ,X ) [K (X ,X ) + λIN ]−1 y

and the predictor converge to the K Kernel predictor with ridge λ:

f̂ (RF )
λ (x)→ f̂ (K )

λ (x) := K (x ,X ) [K (X ,X ) + λIN ]−1 y .



R.F. Predictor
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Finite number of features

ŷ = F
(
F T F + λIP

)−1
F T︸ ︷︷ ︸

Aλ

y , E
[
f̂ (RF )
λ (x)

]
= Σ(L)(x ,X )Σ(L)(X ,X )−1E [Aλ] y

. The matrix Aλ can be studied using the Stieljes transform: 1
P Tr

[(
F T F + λIP

)−1
]

. The matrix F as a special structure: its columns are i.i.d. and Gaussian with cov 1
P K :

F ∼ 1√
P

K 1/2W T

where W is a P × N random matrices with entries i.i.d. standard Gaussian.
. For the matrix F T F :

F T F ∼ 1
P

WKW T ,

whose Stieljes transform can be studied like K
( 1

P W T W
)
: product of a Wishart Matrix

and a deterministic matrix, well studied in free probability.



Main result

Theorem (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, ICML 2020)

Even for P < ∞, E
[
f̂ (RF )
λ (x)

]
is close to the Kernel predictor f̂ (K )

λ̃
with a larger “effective

ridge” λ̃(γ, λ) > λ which is the unique solution of

λ̃ = λ+
λ̃

γ

1
N

Tr
(

K (X ,X )
(

K (X ,X ) + λ̃
)−1

)
,

where K (X ,X ) is the Gram matrix of K .

It is the implicit regularization effect of finite random features sampling.



Effective Ridge and Test Error
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Kernel Method Generalization from the training set



Experiments on Structured Data and Finite N.N.
Recent pre-print of J. Paccolata, L. Petrinia, M. Geigera, K. Tylooa, and M. Wyart:
Setting: Classification with hinge Loss c(y , y∗) = (1− yy∗)+, shallow network, labels only
depends on the first coordinate (stripe model), parameters initialized very small (feature
learning regime).
Three phases during learning:

1. Compressing Regime: Parameters evolve independently and tend to align with the

informative subspace.

2. Fitting regime: when a fraction of constraints are satified, the N.N. tries to fit the
labels but the parameters still evolve within the informative subspace.

3. Over-fitting regime.
Question: Is the N.T.K. theory no more interesting ?



Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !



Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !

Question (Open): How does the N.T.K. improves ? How does the Neural Network "knows"
that the kernel needs to evolve, based only on the training points ?



Final NTK v.s. Neural Network
Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !

Question: Can we estimate the generalization error of a kernel method, based only on the
training points ?



K.A.R.E. : the Kernel Alignement Risk Estimator
Consider a Kernel Method for
3 Random i.i.d. training points xi ∼ D in a compact domain Ω
3 Training labels y∗i = f ∗(xi ) + εei with ei ∼ N (0,1)

3 Minimizing 1
N

∑N
i=1 (f (xi )− y∗i )2 + λ ‖f‖2

H, i.e.

f̂λ(x) = K (x ,X ) [K (X ,X ) + λIN ]−1 Y ∗

Fact (A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel, 2020)

We propose the following estimator of the Risk of the Kernel predictor f̂λ with ridge λ :

Ex1,...,xn,x∼D

[(
f̂λ(x)− f ∗(x)

)2
]

+ ε2 ≈
1
N Y ∗

[ 1
N K (X ,X ) + λIN

]−2
Y ∗(

1
N Tr

[( 1
N K (X ,X ) + λIN

)−1
])2 = K .A.R.E .

A theorem if only the second moments of the observations matters.



Experiments on Real Data



Hyperparameter selection with K.A.R.E.



Conclusion



To Wrap Up the Presentation
Recursive structure of A.N.N. =⇒ attractive properties. The training of A.N.N. using
Gradient Descent with Random Initialization explained using the Neural Tangent Kernel.
In the infinite width limit,

I the N.T.K. is deterministic and constant during training,
I the function follows a Kernel Gradient Descent with fixed kernel,
I the N.T.K. is > 0 and the limiting dynamics converges to a global minimum,
I the final function is of the form Noise + Kernel Method, and by a slight change on the

definition of ANN, it becomes a deterministic Kernel Method.
In the finit width case:

I Fuctuations of the N.T.K. at initialization are the most important and decrease with
P: generalization error decreases as P−

1
2 → double curve descent is expected.

I Last hidden layer finite followed by linear map, last parameters learned with `2 penalty
with ridge λ: again close to a Kernel Method with an other so-called “effective”
ridge λ̃ ≥ λ.

Kernel Method:
I Propose a new estimator for the risk for Kernel Methods: the KARE.



Thank you !
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arXiv:2006.09796, A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, F. Gabriel


