Asymptotic windings of the unitary Brownian

 motionFabrice Baudoin (Joint with J. Wang)

DataSig Seminar Series

March 25, 2021

Introduction: Winding form on the plane

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

Introduction: Winding form on the plane

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

For every smooth path $\gamma:[0,+\infty) \rightarrow \mathbb{C} \backslash\{0\}$ one has the polar representation

$$
\gamma(t)=|\gamma(t)| \exp \left(i \int_{\gamma[0, t]} \alpha\right), \quad t \geq 0
$$

Introduction: Winding form on the plane

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

For every smooth path $\gamma:[0,+\infty) \rightarrow \mathbb{C} \backslash\{0\}$ one has the polar representation

$$
\gamma(t)=|\gamma(t)| \exp \left(i \int_{\gamma[0, t]} \alpha\right), \quad t \geq 0
$$

It is therefore natural to call α the winding form around 0 since the integral of a path γ along this form quantifies the angular motion of this path.

Brownian Winding

Consider now a Brownian motion in the plane.

Brownian Winding

Consider now a Brownian motion in the plane.

Brownian Winding

The integral of the winding form along the paths of a two-dimensional Brownian motion $Z(t)=X(t)+i Y(t)$ which is not started from 0 can be studied using Itô's calculus (or rough paths theory)

Brownian Winding

The integral of the winding form along the paths of a two-dimensional Brownian motion $Z(t)=X(t)+i Y(t)$ which is not started from 0 can be studied using Itô's calculus (or rough paths theory) and yields the Brownian winding functional:

$$
\zeta(t)=\int_{Z[0, t]} \alpha=\int_{0}^{t} \frac{X(s) d Y(s)-Y(s) d X(s)}{X(s)^{2}+Y(s)^{2}} .
$$

Spitzer theorem

Theorem (Spitzer, 1958)

When $t \rightarrow+\infty$, in distribution

$$
\frac{2}{\ln t} \zeta(t) \rightarrow C_{1}
$$

where C_{1} is a Cauchy distribution with parameter 1.

Spitzer theorem

Spitzer theorem nowadays admit many proofs.

Spitzer theorem

Spitzer theorem nowadays admit many proofs. Most of them rely first on the representation

$$
\zeta(t)=\beta\left(\int_{0}^{t} \frac{d s}{R_{s}^{2}}\right)
$$

where $R=X^{2}+Y^{2}$ is a 2 D Bessel process and β is a BM independent from R.

Spitzer theorem

Spitzer theorem nowadays admit many proofs. Most of them rely first on the representation

$$
\zeta(t)=\beta\left(\int_{0}^{t} \frac{d s}{R_{s}^{2}}\right)
$$

where $R=X^{2}+Y^{2}$ is a 2 D Bessel process and β is a BM independent from R.

The characteristic function of ζ can therefore be expressed in terms of the Laplace transform of the additive functional $\int_{0}^{t} \frac{d s}{R_{s}^{2}}$.

Spitzer theorem

One the most powerful and flexible methods to compute the Laplace transform of $\int_{0}^{t} \frac{d s}{R_{s}^{2}}$ is due to M. Yor (1980), who uses ingenious Girsanov transforms between Bessel processes of different dimensions.

Spitzer theorem

One the most powerful and flexible methods to compute the Laplace transform of $\int_{0}^{t} \frac{d s}{R_{s}^{2}}$ is due to M. Yor (1980), who uses ingenious Girsanov transforms between Bessel processes of different dimensions.
This is the method we generalize to study winding type functionals in different settings.

Spitzer theorem

One the most powerful and flexible methods to compute the Laplace transform of $\int_{0}^{t} \frac{d s}{R_{s}^{2}}$ is due to M. Yor (1980), who uses ingenious Girsanov transforms between Bessel processes of different dimensions.
This is the method we generalize to study winding type functionals in different settings.

In this talk, we shall be interested in windings associated with unitary Brownian motions.

Windings of unitary Brownian motions

Theorem (Baudoin-Wang, EJP 2021)

Let

$$
U_{t}=\left(\begin{array}{cc}
X_{t} & Y_{t} \\
Z_{t} & W_{t}
\end{array}\right)
$$

be a Brownian motion on the unitary group $\mathbf{U}(n)$ with $Z_{t} \in \mathbb{C}^{k \times k}$, $1 \leq k \leq n-1$.

Windings of unitary Brownian motions

Theorem (Baudoin-Wang, EJP 2021)

Let

$$
U_{t}=\left(\begin{array}{cc}
X_{t} & Y_{t} \\
Z_{t} & W_{t}
\end{array}\right)
$$

be a Brownian motion on the unitary group $\mathbf{U}(n)$ with $Z_{t} \in \mathbb{C}^{k \times k}$, $1 \leq k \leq n-1$. Assume that $\operatorname{det} Z_{0} \neq 0$. One has then the polar decomposition

$$
\operatorname{det}\left(Z_{t}\right)=\varrho_{t} e^{i \theta_{t}}
$$

where $0<\varrho_{t} \leq 1$ and θ_{t} is a real-valued continuous martingale such that the following convergence holds in distribution when $t \rightarrow+\infty$

$$
\frac{\theta_{t}}{t} \rightarrow \mathcal{C}_{k(n-k)}
$$

where $\mathcal{C}_{k(n-k)}$ is a Cauchy distribution of parameter $k(n-k)$.

Windings of unitary Brownian motions

The proof is rather long:

Windings of unitary Brownian motions

The proof is rather long: a first key step is a pathwise representation of the winding functional θ_{t} in terms of a winding form α which will be defined on the symmetric space $\frac{\mathbf{U}(n)}{\mathbf{U}(n-k) \mathbf{U}(k)}$.

Windings of unitary Brownian motions

The proof is rather long: a first key step is a pathwise representation of the winding functional θ_{t} in terms of a winding form α which will be defined on the symmetric space $\frac{\mathbf{U}(n)}{\mathbf{U}(n-k) \mathbf{U}(k)}$. The second step is to implement Yor's Girsanov transform method in this context.

Stiefel fibration

The geometry underlying the winding functional is the geometry of the Stiefel fibration.

Stiefel fibration

The geometry underlying the winding functional is the geometry of the Stiefel fibration.
The complex Stiefel manifold $V_{n, k}$ is the set of unitary k-frames in \mathbb{C}^{n} :

$$
V_{n, k}=\left\{M \in \mathbb{C}^{n \times k} \mid M^{*} M=I_{k}\right\} \simeq \frac{\mathbf{U}(n)}{\mathbf{U}(n-k)}
$$

Stiefel fibration

The geometry underlying the winding functional is the geometry of the Stiefel fibration.
The complex Stiefel manifold $V_{n, k}$ is the set of unitary k-frames in \mathbb{C}^{n} :

$$
V_{n, k}=\left\{M \in \mathbb{C}^{n \times k} \mid M^{*} M=I_{k}\right\} \simeq \frac{\mathbf{U}(n)}{\mathbf{U}(n-k)}
$$

There is a right isometric action of the unitary group $\mathbf{U}(k)$ on $V_{n, k}$: $(g, M) \rightarrow M g, M \in V_{n, k}, g \in \mathbf{U}(k)$.

Stiefel fibration

The geometry underlying the winding functional is the geometry of the Stiefel fibration.
The complex Stiefel manifold $V_{n, k}$ is the set of unitary k-frames in \mathbb{C}^{n} :

$$
V_{n, k}=\left\{M \in \mathbb{C}^{n \times k} \mid M^{*} M=I_{k}\right\} \simeq \frac{\mathbf{U}(n)}{\mathbf{U}(n-k)}
$$

There is a right isometric action of the unitary group $\mathbf{U}(k)$ on $V_{n, k}$: $(g, M) \rightarrow M g, M \in V_{n, k}, g \in \mathbf{U}(k)$. The quotient space by this action $G_{n, k}:=V_{n, k} / U(k)$ is the complex Grassmannian manifold

Stiefel fibration

The geometry underlying the winding functional is the geometry of the Stiefel fibration.
The complex Stiefel manifold $V_{n, k}$ is the set of unitary k-frames in \mathbb{C}^{n} :

$$
V_{n, k}=\left\{M \in \mathbb{C}^{n \times k} \mid M^{*} M=I_{k}\right\} \simeq \frac{\mathbf{U}(n)}{\mathbf{U}(n-k)}
$$

There is a right isometric action of the unitary group $\mathbf{U}(k)$ on $V_{n, k}$: $(g, M) \rightarrow M g, M \in V_{n, k}, g \in \mathbf{U}(k)$. The quotient space by this action $G_{n, k}:=V_{n, k} / \mathbf{U}(k)$ is the complex Grassmannian manifold : It is a Kähler symmetric manifold of complex dimension $k(n-k)$.

Stiefel fibration

This yields the Stiefel fibration:

$$
\mathbf{U}(k) \rightarrow V_{n, k} \rightarrow G_{n, k} .
$$

Stiefel fibration

This yields the Stiefel fibration:

$$
\mathbf{U}(k) \rightarrow V_{n, k} \rightarrow G_{n, k}
$$

When $k=1, V_{n, k} \simeq \mathbb{S}^{2 n-1}, G_{n, 1} \simeq \mathbb{C P}^{n-1}$ and the Stiefel fibration reduces to the Hopf fibration.

Block decomposition of the unitary Brownian motion

The Lie algebra $\mathfrak{u}(n)$ consists of all skew-Hermitian matrices

$$
\mathfrak{u}(n)=\left\{X \in \mathbb{C}^{n \times n} \mid X=-X^{*}\right\},
$$

Block decomposition of the unitary Brownian motion

The Lie algebra $\mathfrak{u}(n)$ consists of all skew-Hermitian matrices

$$
\mathfrak{u}(n)=\left\{X \in \mathbb{C}^{n \times n} \mid X=-X^{*}\right\},
$$

which we equip with the inner product $\langle X, Y\rangle_{\mathfrak{u}(n)}=-\frac{1}{2} \operatorname{tr}(X Y)$.

Block decomposition of the unitary Brownian motion

The Lie algebra $\mathfrak{u}(n)$ consists of all skew-Hermitian matrices

$$
\mathfrak{u}(n)=\left\{X \in \mathbb{C}^{n \times n} \mid X=-X^{*}\right\}
$$

which we equip with the inner product $\langle X, Y\rangle_{\mathfrak{u}(n)}=-\frac{1}{2} \operatorname{tr}(X Y)$.
Consider now on $\mathfrak{u}(n)$ a Brownian motion $\left(A_{t}\right)_{t \geq 0}$ and the matrix-valued process $\left(U_{t}\right)_{t \geq 0}$ that satisfy the Stratonovich stochastic differential equation:

$$
d U_{t}=U_{t} \circ d A_{t}
$$

Block decomposition of the unitary Brownian motion

The Lie algebra $\mathfrak{u}(n)$ consists of all skew-Hermitian matrices

$$
\mathfrak{u}(n)=\left\{X \in \mathbb{C}^{n \times n} \mid X=-X^{*}\right\}
$$

which we equip with the inner product $\langle X, Y\rangle_{\mathfrak{u}(n)}=-\frac{1}{2} \operatorname{tr}(X Y)$.
Consider now on $\mathfrak{u}(n)$ a Brownian motion $\left(A_{t}\right)_{t \geq 0}$ and the matrix-valued process $\left(U_{t}\right)_{t \geq 0}$ that satisfy the Stratonovich stochastic differential equation:

$$
d U_{t}=U_{t} \circ d A_{t}
$$

The process $\left(U_{t}\right)_{t \geq 0}$ is called a Brownian motion on $\mathbf{U}(n)$.

Block decomposition of the unitary Brownian motion

> Theorem
> Let $U_{t}=\left(\begin{array}{ll}X_{t} & Y_{t} \\ Z_{t} & V_{t}\end{array}\right), t \geq 0$ be a Brownian motion on $\mathrm{U}(n)$ with $Z_{0} \in G L(k, \mathbb{C})$.

Block decomposition of the unitary Brownian motion

Theorem

Let $U_{t}=\left(\begin{array}{ll}X_{t} & Y_{t} \\ Z_{t} & V_{t}\end{array}\right), t \geq 0$ be a Brownian motion on $\mathbf{U}(n)$ with $Z_{0} \in G L(k, \mathbb{C})$.

1. The process $\binom{X_{t}}{Z_{t}}_{t \geq 0}$ is a Brownian motion on the Stiefel manifold $V_{n, k}$

Block decomposition of the unitary Brownian motion

Theorem

Let $U_{t}=\left(\begin{array}{ll}X_{t} & Y_{t} \\ Z_{t} & V_{t}\end{array}\right), t \geq 0$ be a Brownian motion on $\mathrm{U}(n)$ with $Z_{0} \in G L(k, \mathbb{C})$.

1. The process $\binom{X_{t}}{Z_{t}}_{t \geq 0}$ is a Brownian motion on the Stiefel manifold $V_{n, k}$;
2. The process $\left(w_{t}\right)_{t \geq 0}:=\left(X_{t} Z_{t}^{-1}\right)_{t \geq 0}$ is a Brownian motion on the complex Grasmannian $G_{n, k}$.

Skew-product decomposition of the Stiefel Brownian motion

Using the Stiefel fibration

$$
\mathbf{U}(k) \rightarrow V_{n, k} \rightarrow G_{n, k}
$$

this yields a skew-product decomposition of the process $\binom{X_{t}}{Z_{t}}_{t \geq 0}$ in terms of a Brownian motion w on $G_{n, k}$ and a Brownian motion on $\mathbf{U}(k)$.

Skew-product decomposition of the Stiefel Brownian motion

Using the Stiefel fibration

$$
\mathbf{U}(k) \rightarrow V_{n, k} \rightarrow G_{n, k}
$$

this yields a skew-product decomposition of the process $\binom{X_{t}}{Z_{t}}_{t \geq 0}$ in terms of a Brownian motion w on $G_{n, k}$ and a Brownian motion on $\mathbf{U}(k)$. The connection form of the Stiefel fibration will induce the winding form on $G_{n, k}$.

Skew-product decomposition of the Stiefel Brownian motion

Theorem

Let $\left(w_{t}\right)_{t \geq 0}$ be a Brownian motion on $G_{n, k}$ and let $\left(\Omega_{t}\right)_{t \geq 0}$ be a Brownian motion on the unitary group $\mathbf{U}(k)$ independent from $\left(w_{t}\right)_{t \geq 0}$. Let $\left(\Theta_{t}\right)_{t \geq 0}$ be the $\mathbf{U}(k)$-valued solution of the Stratonovich stochastic differential equation

$$
\left\{\begin{array}{l}
d \Theta_{t}=\operatorname{oda}_{t} \Theta_{t} \\
\Theta_{0}=\left(Z_{0} Z_{0}^{*}\right)^{-1 / 2} Z_{0}
\end{array}\right.
$$

where $\mathfrak{a}_{t}=\int_{w[0, t]} \eta$. The process

$$
\binom{w_{t}}{I_{k}}\left(I_{k}+w_{t}^{*} w_{t}\right)^{-1 / 2} \Theta_{t} \Omega_{t}
$$

is a Brownian motion on $V_{n, k}$ started at $\binom{w_{0} Z_{0}}{Z_{0}}$.

Skew-product decomposition of the Stiefel Brownian motion

The $\mathfrak{u}(k)$-valued one-form η is given by

$$
\begin{aligned}
\eta:= & \frac{1}{2}\left(\left(I_{k}+w^{*} w\right)^{-1 / 2}\left(d w^{*} w-w^{*} d w\right)\left(I_{k}+w^{*} w\right)^{-1 / 2}\right. \\
& \left.+\left[d\left(I_{k}+w^{*} w\right)^{1 / 2},\left(I_{k}+w^{*} w\right)^{-1 / 2}\right]\right) .
\end{aligned}
$$

Skew-product decomposition of the Stiefel Brownian motion

From the decomposition

$$
\operatorname{det}\left(Z_{t}\right)=\operatorname{det}\left(I_{k}+w_{t}^{*} w_{t}\right)^{-1 / 2} \operatorname{det} \Theta_{t} \operatorname{det} \Omega_{t}
$$

Skew-product decomposition of the Stiefel Brownian motion

From the decomposition

$$
\operatorname{det}\left(Z_{t}\right)=\operatorname{det}\left(I_{k}+w_{t}^{*} w_{t}\right)^{-1 / 2} \operatorname{det} \Theta_{t} \operatorname{det} \Omega_{t}
$$

one deduces that

$$
\operatorname{det}\left(Z_{t}\right)=\varrho_{t} e^{i \theta_{t}}
$$

with

$$
\varrho_{t}=\operatorname{det}\left(I_{k}+J_{t}\right)^{-1 / 2}, i \theta_{t}=i \theta_{0}+\operatorname{tr}\left(D_{t}\right)+\int_{w[0, t]} \operatorname{tr}(\eta)
$$

where D_{t} is a Brownian motion on $\mathfrak{u}(k)$ independent from w and θ_{0} is such that $e^{i \theta_{0}}=\frac{\operatorname{det} Z_{0}}{\left|\operatorname{det} Z_{0}\right|}$.

Winding functional

We are therefore let with the study of the "winding functional" $\int_{w[0, t]} \operatorname{tr}(\eta)$.

Winding functional

We are therefore let with the study of the "winding functional" $\int_{w[0, t]} \operatorname{tr}(\eta)$.

Lemma

We have

$$
\int_{w[0, t]} \operatorname{tr}(\eta)=i \mathcal{B}_{\int_{0}^{t} \operatorname{tr}\left(w_{s}^{*} w_{s}\right) d s}
$$

where \mathcal{B} is a one-dimensional Brownian motion independent from the process $\operatorname{tr}\left(w^{*} w\right)$.

Limit theorem

The main limit theorem is then the following.

Theorem

The following convergence holds in distribution when $t \rightarrow+\infty$

$$
\frac{1}{t^{2}} \int_{0}^{t} \operatorname{tr}\left(w_{s}^{*} w_{s}\right) d s \rightarrow X
$$

where X is a random variable on $[0,+\infty)$ with density

$$
\frac{k(n-k)}{\sqrt{2 \pi} x^{3 / 2}} e^{-\frac{k^{2}(n-k)^{2}}{2 x}}
$$

Laplace transform

The proof of the theorem relies on an explicit formula for the Laplace transform of $\int_{0}^{t} \operatorname{tr}\left(w_{s}^{*} w_{s}\right) d s$ which is obtained using Yor's method and the Karlin-McGregor formula.

Lemma

For every $\alpha \geq 0$ and $t>0$

$$
\begin{aligned}
& \mathbb{E}\left(e^{-2 \alpha^{2} \int_{0}^{t} \operatorname{tr}\left(w_{s}^{*} w_{s}\right) d s}\right) \\
= & C e^{\left(\frac{1}{3} k(k-1)(3 n-4 k+6 \alpha+2)-2 k(n-k) \alpha\right) t} \\
& \int_{\Delta_{k}} \operatorname{det}\left(\frac{p_{t}^{n-2 k, 2 \alpha}\left(\frac{1-\lambda_{i}(0)}{1+\lambda_{i}(0)}, x_{j}\right)}{\left(1+x_{j}\right)^{\alpha}}\right) \prod_{i, j}\left(x_{i}-x_{j}\right) d x,
\end{aligned}
$$

where the λ_{i} 's are the eigenvalues of $w^{*} w$.

Laplace transform

Sketch of the proof: Let $J=w^{*} w$ (it is essentially a matrix Jacobi process).

Laplace transform

Sketch of the proof: Let $J=w^{*} w$ (it is essentially a matrix Jacobi process). Then, for every $\alpha \geq 0$ the process

$$
M_{t}^{\alpha}=e^{2 k \alpha(n-k) t}\left(\frac{\operatorname{det}\left(I_{k}+J_{0}\right)}{\operatorname{det}\left(I_{k}+J_{t}\right)}\right)^{\alpha} \exp \left(-2 \alpha^{2} \int_{0}^{t} \operatorname{tr}(J) d s\right)
$$

is a martingale.

Laplace transform

Sketch of the proof: Let $J=w^{*} w$ (it is essentially a matrix Jacobi process). Then, for every $\alpha \geq 0$ the process

$$
M_{t}^{\alpha}=e^{2 k \alpha(n-k) t}\left(\frac{\operatorname{det}\left(I_{k}+J_{0}\right)}{\operatorname{det}\left(I_{k}+J_{t}\right)}\right)^{\alpha} \exp \left(-2 \alpha^{2} \int_{0}^{t} \operatorname{tr}(J) d s\right)
$$

is a martingale. Consider now the probability measure P^{α} defined by

$$
\left.P^{\alpha}\right|_{\mathcal{F}_{t}}=\left.M_{t}^{\alpha} \cdot P\right|_{\mathcal{F}_{t}} .
$$

Laplace transform

We first note that

$$
\mathbb{E}\left(e^{-2 \alpha^{2} \int_{0}^{t} \operatorname{tr}(J) d s}\right)=e^{-2 k(n-k) \alpha t} \mathbb{E}^{\alpha}\left[\left(\frac{\operatorname{det}\left(I_{k}+J_{t}\right)}{\operatorname{det}\left(I_{k}+J_{0}\right)}\right)^{\alpha}\right]
$$

and then that under P^{α}, J is still a matrix Jacobi process but with different parameters.

Laplace transform

We first note that

$$
\mathbb{E}\left(e^{-2 \alpha^{2} \int_{0}^{t} \operatorname{tr}(J) d s}\right)=e^{-2 k(n-k) \alpha t} \mathbb{E}^{\alpha}\left[\left(\frac{\operatorname{det}\left(I_{k}+J_{t}\right)}{\operatorname{det}\left(I_{k}+J_{0}\right)}\right)^{\alpha}\right] .
$$

and then that under P^{α}, J is still a matrix Jacobi process but with different parameters. One concludes with Karlin-McGregor formula which yields the density of the eigenvalues of matrix Jacobi processes.

Asymptotics of the radial motions

Interestingly, our analysis also yields that when $t \rightarrow+\infty$,

$$
\left|\operatorname{det} Z_{t}\right|^{2} \rightarrow \prod_{j=1}^{\min (k, n-k)} \mathfrak{B}_{j, \max (k, n-k)}
$$

where $\mathfrak{B}_{a, b}$ are independent beta random variables with parameters (a, b).

Asymptotics of the radial motions

Interestingly, our analysis also yields that when $t \rightarrow+\infty$,

$$
\left|\operatorname{det} Z_{t}\right|^{2} \rightarrow \prod_{j=1}^{\min (k, n-k)} \mathfrak{B}_{j, \max (k, n-k)}
$$

where $\mathfrak{B}_{a, b}$ are independent beta random variables with parameters (a, b). However, since $Z^{*} Z$ is a matrix Jacobi process, this last result can be more easily obtained using results on the Jacobi ensemble by A. Rouault.

