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GANs and distribution-dissimilarities

I GAN algorithm

Train an image-generator
by minimizing the dissimilarity between real and fake data
as measured by a classifier that tries to separate them

I GANs need no pre-defined dissimilarity measure to compare true and
fake data-distribution

GANs use a classifier-based distribution-dissimilarity.

Depends on:

I classifier’s capacity F

I classification reward R

(i.e. the negative loss)
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GANs and distribution-dissimilarities

Depends on:

I classifier’s capacity F

I classification reward R

(i.e. the negative loss)

D(P,Q) = sup
ϕ∈F

EX ,Y R(ϕ(X ),Y )
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Classifier-based distribution-dissimilarities: Examples

I IPM: Fix R(ϕ(X ),Y ) = Yϕ(X ); vary F.

DF(P,Q) = sup
ϕ∈F

EP [ϕ]− EQ [ϕ]


F = B(Cb) TV
F = B(Lip) Wasserstein-1
F = B(Hk) MMD

I f -divergence: Vary R; make F “large enough”

Df (P,Q) = sup
ϕ∈F

EP [ϕ]− EQ [f ∗(ϕ)]


f ∗(t) = t t ∈ [−1, 1] TV
f ∗(t) = et−1 t ∈ R KL
f ∗(t) = t/1−t t < 1 Hellinger2

f ∗(t) = − log(1− et) t < log 2 JS

I Restricted f -divergences: Vary both R & F.
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Factors that influence D(P ,Q) and GAN-like training

I Capacity F

Special case of MMDs [SS18]

Adversarial examples [SOBS+19]

I Reward R

I Optimization procedure to find supϕ∈F (and infP D(P,Q))
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What is the right capacity?
I Too small capacity may miss relevant information

I But too much capacity can also hurt:

I classifier gets more difficult to learn
I dissimilarity can saturate on discrete measures (e.g. samples)

Goals:

1. When is the dissimilarity perfectly discriminative? (i.e. D(P,Q) = 0⇒ P = Q)

2. When does it metrize weak convergence?

3. Real-world examples with too high capacity?
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Joint work with

Bernhard Schölkopf Lester Mackey Alessandro Barp

Carl-Johann SIMON-GABRIEL Distribution-Dissimilarities October 22, 2020 9 / 24



Why MMDs and Goals

Goal: (for MMDs)

1. When is the dissimilarity perfectly discriminative?

2. When does it metrize weak convergence?

MMD := IPM with F = B(Hk) (MMDk (P,Q) := supϕ∈B(Hk )
EP [ϕ]− EQ [ϕ])

Why MMD?

I dissimilarity (semi-) metric

I common in ML & computable on samples  P. Alquier & J. Mairal!

I changing k changes F, changes the capacity

I IPM functional is linear in ϕ ⇒ can use duality!

What distrib. can be separated?
duality⇐===⇒ What fcts can F approximate?
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Goal 1: Perfect discrimination

Hk dense MMDk perf. discr. Usual Name

F F′

C0 Mf

C Mc

Lp(µ) Lq(µ)

CX Mδ

((Cb)c)/1 P (or M0
f )

CX/1 Pδ(or M0
δ)

Theorem (Answer to 1: Perfect discrimination [SS18])

If Hk ↪→ F, the following is equivalent:

(i) Hk is dense in F.

(ii) MMDk is perf. discr. over M := F′.
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Lp(µ) Lq(µ)
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CX/1 Pδ(or M0
δ)

Theorem (Answer to 1: Perfect discrimination [SS18])

If Hk ↪→ F, the following is equivalent:

(i) Hk is dense in F.

(ii) MMDk is perf. discr. over M := F′.
Based on Fig.1.1 [SFL11]
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When does MMD metrize weak-convergence?

Theorem (

Compact case

)

Let k ∈ Cb defined on a locally compact input space.
Then the following is equivalent.

(i) MMDk is perfectly discriminative over P.

(ii) MMDk metrizes weak convergence on P.

Theorem (Non-compact case [SBM20])

Let k ∈ Cb defined on loc. comp. non-compact space s.t. Hk ⊂ C0.
Then the following is equivalent.

(i) MMDk is perfectly discriminative over Mf .

(ii) MMDk metrizes weak convergence on P

I With M = P: mass can diffuse to infinity  Kernel Stein
Discrepancies

I If Hk 6⊂ C0, anything can happen: (i) without (ii) and (ii) without (i)
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Conclusion on MMDs

For MMDs, we characterized

1. perfect discrimination

2. weak-convergence metrization

Are these properties important in practice?
I typically give consistency guarantees, but this ignores sample-size
I non-consistent algos may have better approx./sample-size trade-off

Illustration with generative models
I Idea: Generator Gθ : Z −→ X generates sample from PG .

Parameters θ optimized to minimize DF(P̂G , Q̂).
I F = neural network  GAN: not consistent but better

F = B(Hk) with Gauss kernel  MMN: consistent but worse

Other point of views:

I use other notions of capacity (VC dim, Rademacher complexity, ...)
I what differences/invariances are classifiers sensitive to?
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Outline

1. Introduction: classifier-based distribution-dissimilarities

2. Maximum Mean Discrepancies (MMD)

3. Adversarial Vulnerability of Neural Networks
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Adversarial Examples

I Adversarial Example:
small input-perturbation that yields large output-variation of classifier

I Reveals discrepancy btw. classifier’s and perceptual dissimilarity

-1 x y 1

-1

0

1

1-Bounded

TV

-1 x y 1

1-Bounded &
1-Lipschitz

BL

For a link btw adv. error and optimal transport: see [PJ20]

Goal

Understand why neural networks are adversarially vulnerable.
Can we quantify & predict this vulnerability?
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Adversarial Vulnerability: Introductory Example

I Binary linear classification: y = sign(x1) with x = (x1, x2, . . . , xd).

I Learned with linear classifier: ŷ = sign(wTx), w = (w1,w2, . . . ,wd).

I Optimal classifier: w∗ = (1, 0, 0, . . . , 0)
In practice: w = (1 + ε1, ε2, . . . , εd)

I Does not matter for average sample/perturbation:

wT (x + δ)︸ ︷︷ ︸
perturbed output

= wTx︸ ︷︷ ︸
unperturbed output

+ δ1 +
∑d

i=1 εiδi︸︷︷︸
±|ε||δ|︸ ︷︷ ︸

cancels out by CLT ∝
√
d |ε||δ|

High accuracy & Random perturbation robustness 6⇒ Adv. robustness

Adversarially vulnerability increases with dimension
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I Learned with linear classifier: ŷ = sign(wTx), w = (w1,w2, . . . ,wd).

I Optimal classifier: w∗ = (1, 0, 0, . . . , 0)
In practice: w = (1 + ε1, ε2, . . . , εd)

I Does not matter for average sample/perturbation:

wT (x + δ)︸ ︷︷ ︸
perturbed output

= wTx︸ ︷︷ ︸
unperturbed output

+ δ1 +
∑d

i=1 εiδi︸︷︷︸
±|ε||δ|︸ ︷︷ ︸

cancels out by CLT ∝
√
d |ε||δ|

High accuracy & Random perturbation robustness 6⇒ Adv. robustness

Adversarially vulnerability increases with dimension

Carl-Johann SIMON-GABRIEL Distribution-Dissimilarities October 22, 2020 17 / 24



Adversarial Vulnerability: Introductory Example

I Binary linear classification: y = sign(x1) with x = (x1, x2, . . . , xd).
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I Learned with linear classifier: ŷ = sign(wTx), w = (w1,w2, . . . ,wd).

I Optimal classifier: w∗ = (1, 0, 0, . . . , 0)
In practice: w = (1 + ε1, ε2, . . . , εd)

I Does not matter for average sample/perturbation:

wT (x + δ)︸ ︷︷ ︸
perturbed output

= wTx︸ ︷︷ ︸
unperturbed output

+

δ1 +
∑d

i=1 εiδi︸︷︷︸
±|ε||δ|︸ ︷︷ ︸

cancels out by CLT ∝
√
d |ε||δ|

High accuracy & Random perturbation robustness 6⇒ Adv. robustness

Adversarially vulnerability increases with dimension

Carl-Johann SIMON-GABRIEL Distribution-Dissimilarities October 22, 2020 17 / 24



Adversarial Vulnerability: Introductory Example

I Binary linear classification: y = sign(x1) with x = (x1, x2, . . . , xd).
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Adversarial robustness needs good model assumptions

What to do against adversarial vulnerability?

I 1st remedy idea: use more data → universal answer?

I 2nd remedy idea:
reduce models’ capacity
but incorporate better data-assumptions

Illustration on previous example
Favor models that use only few input-dims by:
I hard-coding it in model architecture
I or using a sparsifying regularizer (LASSO)

1. Without data-assumptions, adv. robustness can be hard to get.
2. With structured data, model assumptions can alleviate vulnerability.
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For images, higher resolutions should help, not hurt

I Many no-free-lunch type of results [GMFS+18; SSTT+18; SHSF+19]

assume uniformity of distribution in input-dim
(concentric spheres, bounded densities with full support)

I But images do not satisfy their assumptions

no full support
densities peaked in high dim (= not bounded)
higher resolution should help, not hurt

Adv. vul. questions what is wrong with our classifiers, not our data.

Question

What properties of neural nets are not enough adapted to data?
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Adversarial Damage and Gradients

Definition (Adversarial Damage)

I ε, ‖·‖-Attack: perturbed sample x + δ s.t. ‖δ‖ ≤ ε.

I Adv.Dam.: Expected maximal loss-increase after ε-sized ‖·‖-attacks

Assuming that the Taylor-expansion is legit, question:

I How big is Ex [|||∂xL|||] in practice?
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Size of Ex [|||∂xL|||] for at initialization

Back to linear layer:

wT (x + δ)︸ ︷︷ ︸
perturbed output

− wTx︸ ︷︷ ︸
unperturbed output︸ ︷︷ ︸

adversarial damage at input x

=
∑d

i=1 wiδi︸︷︷︸
+|wi ||δ| ≈|δ|/

√
d︸ ︷︷ ︸

everything adds up! ∝ d |w ||δ| ≈
√
d |δ|

Generalization:

Theorem (Gradient norms of NNs at initialization [SOBS+19])

At (He-)initialization, the adversarial damage of almost any usual
feedforward network grows with the input-dimension d as

AdvDamε,‖·‖p ≈ εp ‖∂xL‖q ∝
√
d

Dimension-dependence is independent of network topology.
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At (He-)initialization, the adversarial damage of almost any usual
feedforward network grows with the input-dimension d as

AdvDamε,‖·‖p ≈ εp ‖∂xL‖q ∝
√
d

Dimension-dependence is independent of network topology.
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Gradient norms and vulnerability after training

After usual training?

After robust training? Cost for accuracy?
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Conclusion on adversarial vulnerability

I Vulnerability at initialization of current nets increases with dimension

I Dimension-dependence persists after usual and robust training

Current nets do not naturally incorporate all relevant data-structure.

Questons for future:

I Why does robust training not remove dimension-depence:
training algo or function class problem?

I Design networks that incorporate more data-assumptions
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Summary

I Classifier-based distribution dissimilarities

I Influence of classifier capacity in MMDs on

I perfect discrimination of distributions
I metrization of weak convergence
I Key insight: duality

Unifies concepts of SPD, characteristic, universal kernels

I Adversarial vulnerability:

I Focus on classifiers, not data
I Current NN inits cause vulnerability to increase with input dim
I Suggests classifiers do not incorporate enough invariances of data

Collaborators and audience: THANKS! QUESTIONS?
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