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A Turing vision
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We channel our research around a number
of ambitious challenges which represent
areas in which Al and data science can have a
game-changing impact for science, society,
and the economy. These challenges will not
be led by the Turing alone, but depend on
significant collaboration and partnerships.
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A public domain collaboration on detecting malware
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ICM Korea 2014

Rough path theory is focused on capturing
and making precise the interactions
between highly oscillatory and non-linear
systems. It draws on the analysis of LC
Young and the geometric algebra of KT
Chen. The concepts and the uniform
estimates have widespread application,
contribute to (Graham) automated
recognition of Chinese handwriting and
(Hairer) formulation of appropriate SPDEs
to model randomly evolving interfaces.
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Modelling behavior of
evolving systems



ICM Korea 2014: “ Datasie

At the heart of the mathematics is the e
challenge of describing a potentially highly

oscillatory and vector valued stream

parsimoniously and efficiently, well enough

to predict the response of a nonlinear

system such as

dy: = f(ye)dxe, yo = a

The answer is subtle, but a coreidea is the
description of x over intervals via the (log)
signature (Chen).



Much of the research introduced today comes from DataSig:

an EPSRC/UKRI 5-year program grant A

DataSig
Mathematics oo

* rough path theory and signatures

* describing the interactions between complex systems from the top down
* extending the calculus of differential equations to complex contexts

* the notion of an unparameterized path captured by the order of events

* clean and minimal universal feature sets - (expected) signature

Innovation

* the notion of a neural controlled differential equation

* the notion of a pde-kernel which harnesses the numerics of PDE theory.

* aprincipled mathematical framework that allows further innovation (e.g. simulation)

Embedded contexts
* streamed data is everywhere; Chinese handwriting, hospital wards, event logs ...
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Streamed data s~

* acharacterdrawn on the screen of aniPhone

* anorder book

* apiece of text

* progression through hospital record

e astronomical data

* video of a person moving

* an evolvingstream of emotions

* |CU datato detect sepsis

* the evolvingstock positionin a supermarket or
computer switch

Ensembles of streamed data

* the event log of processes generated by malware

* the behaviourof crowds

* the evolution of cancer cell lines

Key questions

* understand what you have observed

* predict the distribution of what is happening next
* identify anomalies
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A rough path
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Some maths of
evolving systems
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Data science does not like symmetry Se e
DataSig
* Re-parameterisation is a huge

symmetry group

10 1

0.8 -

* Multimodal streams modulo re-
parameterisation form a group 06 -

* Representing this group in the .
tensor algebra provides a faithful
feature set and removes the
symmetry 0.0 1

0.2 1

. CII{I DrE Drd D.E 013 I:I]
* Drawn from old mathematics, new x
tools, signature and log signature,
and new maths describing the

functions on streams
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R RV,

Different sampling procedures DataSig

The letter “3” is drawn
from top to bottom

The x coordinate of the
evolving symbol
sampled differently (at
uneven speeds)
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R RV,

Different sampling procedures DataSig

The number “3” x, y coordinates — same picture drawn at two
different speeds

° no consistent wavelets
* reparameterisations do not form a linear space!
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Different sampling procedures

* The letter “3” is drawn
from top to bottom

* How does one describe
the three or any path
modulo the symmetry
of parametrisation?
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The signature of a path describes
an unparameterised stream y

Signature is a top down description for unparameterised paths
that describes a path segment through its effects of stylised
nonlinear systems

dS =S Q dy

It filters out the infinite dimensional noise of resampling

allowing prediction and classification with much smaller
learning sets.

It gives fixed dimensional feature sets regardless of the
sample points.*

missing data/varying parameterisation notissues althoughinadequacy of sampling may be

Felred
DataSig
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The signature - faithful and universal features I
describing an unparameterised stream " DataSig

The signature of a stream y over I = [s, t] defined by )., Sk
where S5 = 1 and

S I) = f f Ay, dyy, - Vi,

S<U<-<up<t

These “Fourier-like” features exactly describe the unparameterised stream
(Hambly Lyons Annals Math 2010) up to appropriate null sets.

Coordinate iterated integrals are universal models
<eSy,lI >
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Analysis, geometry, combinatorial Hopf/dendriform/sensor

algebras Selred

DataSig

mathematics and data

* The Signature is a faithful S 9
embedding of the unparametrized <z "¢
stream into a vector space -

« Continuous functions on streams ;5% ~ °
can be well approximated by
linear functionals on signatures

* The Expected Sighature describes
the ensemble of paths

* The log-signature describes paths
without redundancy

* There is a natural pde kernel

17



Analysis, geometry, combinatorial Hopf/dendriform/sensor

EVEV4

algebras o Data8|g

Let be x, y be unparametrized pathsin H
and consider the bilinear form K(x,y) = _
(S(x),S(y)). Franz J. Kiraly, Harald
Oberhauser; JIMLR 20(31):1-45, 2019
gave a kernel trick for the tangent kernel ~
for the truncated signature embedding. *

Salvi et al. then identified the Goursat
pde as the kernel trick for the untrucated
kernel and gave analytic sense for it even

for rough paths:

azK(x | [uo,u];ﬂ [vo,v])
ouov

= (56, Y> K(xl[uo,u]' yl [vo,v])
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Recovering the curves from the signature DataSig

Weixin Yang,
Jaiwei Chang

Fermaniani®



Modern data
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Fig. 1. Visual representation of selected channels of one single streaming tree. Each plot represents the evolution i tme of the value of a given channel of

the streaming tree, on its various branches. A red dot indicates a point where the currently-tracked process sets off a child process. causing the tree 1w branch.
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Neural Controlled
differential equations

s
DataSig



Al fields i

Use controlled differential equations to model policies

Train a neural f so that

dy = f(y)dy,y, = a
Where a represents the current state and y determines the
external policy.

Allows learning counterfactuals. (Van der Schaar).

Neural Rough Differential Equations for Long Time Series

https://arxiv.org/abs/2009.08295

James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, Terry Lyons

= ‘ RVEVS

DataSig
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Ensembles of paths
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Process tree example:

Expected signatures of clouds of paths

Developed a way to apply
expected signature techniques
by viewing processes as trees
evolving over time (eg the crop
yield prediction task).

Predicting the yield of wheat
crops over a region from the
longitudinal measurements of
climatic variables recorded
across different locations of the
region.

Eurostat dataset containing the
total annual regional yield of
wheat crops in mainland France
- divided in 22 administrative
regions - from 2015 to 2017.

AR
DataSig

A rough path betwean
mathematics and data scienca

for 1 in tqdm(range(NUM_TRIALS)):
pwES = pathwiseExpectedSignatureTransform(order=2).
SpwES = SignatureTransform(order=3).fit transform(p

_train, x’test, y train, y test = train_test split

ChCV(plpe, parameters, verbose=@, n




Process tree example:

Expected signatures of clouds of paths

Viewing a cloud of interacting paths
evolving over time as an expected
signature, it can be merged with other
channels, and the process repeated.
PDE kernels can manage dimension.
The crop yield prediction task matches
this model: AISTATS 2021
arxiv.org/pdf/2006.05805.pdf

The climatic measurements
(temperature, soil humidity and
precipitation) are extracted from the
GLDAS database (Rodell et al, 2004),
are recorded every 6 hours at a spatial
resolution of 0.25° x 0.25°, and their
number varies across regions. Add
regional policy information, etc.
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SK-Tree malware detection ROC

Process tree example: ——

Expected signatures of clouds of paths
ROC g |

Developed SK-tree structure to apply evaluation of % 05
standardised expected signature the Sk-Tree 3 g

: binary g 04] ROC fold 1 (AUC = 100
techniques to host-based event logs, by classifieron £ A0Cfokd 1 (AUC = .00
viewing processes as trees evolving over theOpTCdata .| 7 ocrsmves oo
time analysed as expected signatures O o e e ol

0.04 £ 1 std. dev

through a PDE kernel. N S

2102.07904.pdf (arxiv.org)

We demonstrate the SK-Tree
to detect malicious events on

a portion of the publicly

Number of processes set off

i

available DARPA OpTC ’ [
dataset, achieving an initial I‘J T TR
AUROC score of 98% for a rﬁj:' [ Fr

supervised question.


https://arxiv.org/pdf/2102.07904.pdf

De-identified Streams
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Evolving landmarks from video

* Reducing people in video to
landmarks is straightforward

e The matchstick men and women
are deidentified data streams in
30-75 dimensions

* Currently working with facial
landmarks and lip reading.

http://mvig.sjtu.edu.cn/research/alphapose.html
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H.Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards Understanding Action
Recognition,” in 2013 |EEE International Conference on Computer Vision, Dec. 2013,
pp.3192-3199
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GT: Golf

Top 1: Golf, cs: 0.937

Top 2: Shoot ball, cs: 0.027
Top 3: Catch, cs: 0.019

GOLF

H.Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards Understanding Action
Recognition,” in 2013 IEEE International Conference on Computer Vision, Dec. 2013,

pp.3192-3199

33



H.Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards Understanding Action
Recognition,” in 2013 |EEE International Conference on Computer Vision, Dec. 2013,
pp.3192-3199

34



GT: Push

Top 1: Push, cs: 0.433
Top 2: Kick ball, cs: 0.122
Top 3: Run, cs: 0.120

PUSH

H.Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards Understanding Action
Recognition,” in 2013 |EEE International Conference on Computer Vision, Dec. 2013,

pp.3192-3199
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Experimental results

JHMDB dataset

Method Accuracy (%)
(2D, Ground Truth Pose)
DT-FV [74] 65.9
#classes: 21
P-CNN [56] 74.6
#samples: 928
HLPF [31] 76.0
Novel HLPF {44] 79.6 [74] H. Wang and C. Schmid, Action recognition with improved trajectories, In IEEE ICCV, pp. 3551-3558,
2013.
Path Signaml‘e (0111‘5) 80.4 [56] G. Cheron, et al. P-CNN: Pose-based CNN Features for Action Recognition. In ICCV, 2015.

[31] H. Jhuang, et al. Towards understanding action recognition, In ICCV, pp. 3192-3199, 2013.

[44] J. Fan, Z. Zha, and X. Tian, Action recognition with novel high-level pose features, In IEEE International
Conference on Multimedia & Expo Workshops (ICMEW), pp. 1-6, 2016
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Experimental results b HMDE

i Ground Truth Estimated Pose ~ #Hclasses: 12 Privacy
Pose i
pose only with extra clues #samples: 319
MST [CVPR-14] ; - 45.3 (RGB)
HLPF [|CCV—13] 78.2 529 _ [CVPR-14]J). Wang, et al. Cross-view action modeling, learning and recognition.
' ' In CVPR, 2014.
JointAP [CVPR-15] = 61.2 - [ICCV-13] H. Jhuang, et al. Towards understanding action recognition, In ICCV, pp.
3192-3199, 2013.
P-CNN [ICCV']'S] 2.5 - 66.8 (RGB) [CVPR-15] B. X. Nie, et al. Joint action recognition and pose estimation from

[ICCV-15] G. Cheron, et al. P-CNN: Pose-based CNN Features for Action

Hierarchical [CVPR-16] - 66.9 77,5 (RGB) Recognition. In ICCV, 2015.

[FG-16] U.lgbal, et al. Pose for action - action for pose, In IEEE FG, 2016.
JDD [”CAI']-G] 81.9 - 7.7 (RGB) [CVPR-16] I. Lillo, et al. A hierarchical pose-based approach to complex action
RPAN [|CCV—17] ) ) 78.6 (RGB) ;gil:rstanding using dictionaries of actionlets and motion poselets. In CVPR,
Path Signature (Ours) 84.2 68.2 75.7 (confidence) [IJCAI-16] C. Cao, et al. Action recognition with joints-pooled 3d deep

convolutional descriptors. In IJCAI, 2016.
[ICCV-17] Du W, et al. Rpan: An end-to-end recurrent pose-attention network for
action recognition in videos. In ICCV, pp. 3725-3734, 2017.
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Toward understanding action recognition

(a) Catch Climb stairs Golf
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Experimental results

Method Accuracy (%) SBU Intera.ctlon
Dataset (Kinect 3D)
Yun et al., [32] 80.3 Privacy
#classes: 21
Ji et al., [76] 86.9
#samples: 300
CHARM [77] 83.9
[32] K. Yun, et al. “Two-person interaction detection using body-pose features and multiple instance learning,”
CVPRW, pp. 28-35, 2012.
HBRNN [19] [T'C'Pﬁﬂed b} [18]) 80.4 [76] Y. Ji, et al. “Interactive body part contrast mining for human interaction recognition,” In ICMEW, pp. 1-6,
2014.
] . [77] W. Li, etal. “Category-blind human action recognition: a practical recognition system,” In ICCV, pp. 4444-
Deep LSTM (reported by [18]) 86.0 152, 2015
[18] W. Zhu, et al. “Co-occurrence feature learning for skeleton based action recognition using regularized deep
Co-occurrence LSTM [ 18] 90.4 LSTM networks,” In AAAI, vol. 2, 2016.
[19] Y. Du, et al. “Hierarchical recurrent neural network for skeleton based action recognition,” In CVPR, pp.
1110-1118, 2015.
STA-LSTM [?3] 91.5 [78] S. Song, etal. “An end-to-end spatio-temporal attention model for human action recognition from skeleton
data,” InAAAI,vol. 1, no.2, p. 7, 2017.
ST-LSTM-Trust Gate [22][2'{] 033 [23] J. Liu, et al. “Skeleton-based action recognition using spatio-temporal Istm network with trust gates,” IEEE
TPAMI, 2017.
[79] Q. Ke, et al. “SkeletonNet: mining deep part features for 3-Daction recognition,” IEEE Signal Processing
SkelelnnNel [T*}] 93.5 Letters, vol. 24, no. 6, pp. 731-735, 2017.
[Ours] W.Yang, T. Lyons, H. Ni, C. Schmid, L. Jin, “Leveraging the Path Signature for Skeleton-based Human
Path Signalure (Ours) 06.8 Action Recognition,” arXiv preprint arXiv:1707.03993, 2017.
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GT: Push

Top 1: Push, cs: 0.995
Top 2: Pick, cs: 0.001
Top 3: Jump, cs: 0.001

41



Communication
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Landmark-based
action recognition

To communicate our methodology,
and aside from our papers, with their
software we are constructing
notebooks with introductory
examples of what we can do.

/Il

Peter Foster has put together a
simple notebook you can run that
demonstrates viable approaches to
recognizing these actions that can be
trained on small datasets.

https://www.datasig.ac.uk/examples

“‘;Mill' hm i \I'IH'I l“ W (4T
i il ‘! '\
.'m " "q"i ', ‘|| ‘} '

w

.\

A



tiialilin

44




