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@ A Kernel Two-Sample Test for Functional Data by GW,
Andrew B. Duncan (https://arxiv.org/pdf/2008.11095)

@ Statistical Depth Meets Machine Learning: Kernel Mean
Embeddings and Depth in Functional Data Analysis by GW,
Stanislav Nagy (https://arxiv.org/pdf/2105.12778)

@ A Spectral View of Kernel Stein Discrepancy with Application

to Goodness-of-Fit Tests for Measures on Hilbert Spaces by
GW, Mikotaj J. Kasprzak, Andrew B. Duncan Coming soon!
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Summary

@ Functional data analysis
@ Statistical kernel-based methods

e Maximum mean discrepancy
o Kernel Stein discrepancy

e Future thoughts
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Talk in one slide
@ Kernel-based methods can be adapted to Hilbert spaces
@ So can apply to functional data
@ Strong numerical performance
°

Opens many questions
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Functional Data Analysis (FDA)
@ Specific statistical challenges, distinct from finite dimensions
@ Projection methods often employed, Hilbert view

@ Gaussian processes, Gibbs measures, SDEs
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Figure 1: Height measures at different times for male and female children
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Textbook History of FDA

Lectiure Moles in
=tatistics

Functional
Data

Analysis
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Textbook History of FDA

F'lrulrh:h:r'ba

WILEY SERIES IN PROBABILITY AND STATISTICS

Theoretical Foundations of
Functional Data Analysis,
with an Introduction to
Linear Operators

Tailen Hsing - Randall Eubank

WILEY
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Statistical Kernel-Based Methods
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(Brief) History of statistical kernel-based methods

@ Studied under a different name in 1970s by Guilbart and
colleagues at Lille [Guilbart, 1978, Berlinet and
Thomas-Agnan, 2004]

@ Rose to prominence in statistical machine learning in mid
2000s [Gretton et al., 2012]

@ Theory matured in 2010s with new applications beyond
testing and different data types [Muandet et al., 2017]

e Kernel Stein discrepancy [Oates et al., 2016, Liu et al., 2016,
Chwialkowski et al., 2016]

@ Application to functional data [Chevyrev and Oberhauser,
2018, Wynne and Duncan, 2020, Hayati et al., 2020, Gérecki
et al., 2018, Jia et al., 2021]
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Textbook Using Kernels

1eirwart + Andeeas (hetstmann

Support Vector
Machines
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Textbook Using KME

RFPRUT‘JI I(ﬁlNG KERNEL
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Notation
@ Let X be a separable Hilbert space e.g.
L2([0,1]9), wz ([0, 1]9)
e P(X) Borel probability measures on X
o P(s) = [, eltsXxdP(x)
@ N¢ Gaussian measure, mean zero, covariance operator C

@ For some P, Q € P(X) observe i.i.d.
{Xi}:N:I ~ Pa{yj}jl\il ~Q
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A kernel k: X x X — R is a symmetric, positive definite function

Example

SE-T  k(x,y)= e IT=TvI/2
IMQ-T  k(x,y) = (I Tx = Ty +1)""/2

Theorem

For i € P(X), k(x,y) = ii(x — y) is a kernel where
i(s) = [y e't$2)x dyi(z) is the characteristic function (Fourier
transform) of P.
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RKHS

@ A Hilbert space of functions H is called a reproducing kernel
Hilbert space if there exists a kernel k such that

Q k(,x)eHVxeX
Q@ f(x) = (f k(-,x))nVf e HVx e X

@ Denote the RKHS of k by Hj

@ Reproducing property gives closed forms
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Maximum Mean Discrepancy
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MMD(Q, P) = e [EQlf (X)] — Ep[f(X)]]

MMD(Q, P)? // (x,y)d(P = Q)(x)d(P — Q)(y)
MMDy(Q, P)? /’P

when k(x,y) = fi(x — y), which is common.
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Easiest proof of characteristicness

If k(x,y) = fi(x — y) and u has full support then
MMD, (@, P) = 0 if and only if P = Q.

MMD,(Q P(s) (s)‘ du(s) = 0

T O
Il
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e In finite dimensions Bochner k(x,y) = ji(x —y) <= ks
continuous

@ Minlos-Sazonov shows MUCH stronger continuity is needed in
infinite dimensions

Example

k(x,y) = e IT=T%/2 = Ji(x — y) for some 4 if and only if
T = CY2 for a trace class C, so T = Iy doesn't work. Such a T
smooths the signal a lot.
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Extending class of kernels

Let X,) be separable Hilbert spaces, T: X — ) be injective then
the SE-T and IMQ-T kernels

1 2
kse(x,y) = e 25

kimq(x,y) = (I Tx = Ty|5 +1)7+/2

are characteristic.
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Compliments
@ Topological properties of MMD can be investigated

@ Estimation of MMD using reconstructions based on
discretised data can be addressed

@ The RKHS perspective provides a unification between other
existing approaches in FDA e.g. ECF = h-depth
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Kernel Stein Discrepancy
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@ Compute a kernel-based distance using only one set of samples

@ Derived by [Oates et al., 2016, Liu et al., 2016, Chwialkowski
et al., 2016]

@ All theory done intrinsically on R?

@ Very wide applications in computational statistics and
statistical machine learning
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Call T and F a Stein operator and Stein class for P € P(X) if
EQ[Ff(X)]=0VfeF < P=Q
Example
o If ¥ =R, P = N(0,1) then Af(x) = f'(x) — xf(x) and

F = CHX).
@ Generators of Markov processes

25 /59



IflNactson f: X = R

KSDr«(Q,P) == sup [Eq[lf(X)]l|
If]l<1

IfMactson f: X - X

KSDr k(Q,P) == sup [Eq[lf(X)]Il
(P!

where K(x,y) = k(x,y)ly is an operator valued kernel. So RKHS
if functions f(x) = Y07 enfa(x) , fn € Hk
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In practice people use vectorised versions of generators

Example
X =R9, P has density p

Bf(x) = Tr(D*f(x)) + (V log p(x), Df (x))gd
Bf(x) = Tr(Df (x)) + (V log p(x), f(x))gd

B is generator of Langevin diffusion
BB is the most used Stein operator in RY
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—U(x)

For target measures P = e N¢ we can use generators of

infinite dimensional SDEs

Af(x) = Tr(CD?*f(x)) — (x + CDU(x), Df (x)) x
Af(x) = Tr(CDf(x)) — (x + CDU(x), f(x)) x
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Af(x) = Tr(CDf(x)) — (x + CDU(x), f(x))x
Bf(x) = Tr(Df (x)) + (V log p(x), f(x))gd

For X =R let P have density p and fix & € R9%? then
P = e_U(X)Nz where

(Z71x, x)pa/2 + log p(x)
Y x + Vlog p(x)

U(x)
DU(x)

Subbing into A gives

Af(x) = Tr(XDf(x)) — (Vlog p(x), Zf (x))ga = B(XF)(x)
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Assumption

X is an infinite dimensional, real, separable Hilbert space and the

target probability measure P is defined as j—,\'fc(x) = 7 g,
for a normalising constant Z, with e=U()/2 ¢ Wé’z(/'\,’) and

C € L (X) is injective and such that Ey,[||CY/2DU(X)|%] < oo.

Assumption

k is a real valued, bounded kernel on X such that
D1k, D>k, D,D1 k exist, are continuous and

sup [|Dik(x,y)llx, sup [[Dak(x,y)|lx < oo
Xv.yEX X,yEX

sup [|Da2D1k(x, y)llL(xxar) < 00
x,yeX
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Theorem

Let X, P, k satisfy Assumptions 1 and 2. Denote the eigensystem
of C by {\j,e}22, and define the Stein kernel h corresponding to
k and A as

h(x,y) = k(x,y){x + CDU(x),y + CDU(y))x
— Dik(x,y)(Cy + C*DU(y))

— Dak(x,y)(Cx + C2DU(x)) + D A D2D1k(x, y)(er, &),
i=1

then for Q € P(X) such that Eql||X||x], Eo[l| CDU(X)]|x] < o,

KSD4k(Q,P) = sup EglAf(X)] =Eq[h(X,X")]"?,
Ifllk<1

where X, X' ~ @ are independent.
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@ No known conditions for KSD to separate in infinite
dimensions

@ No spectral view of KSD in finite or infinite dimensions

@ Hard to see impact of hyper-parameters
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For k(x,y) = ii(x — y)

MMD(Q, P) = e [EQ[f(X)] = Ep[f(X)]]
= e [Eo[O(A)(X)]]

B(s) ~ Q)| dts)

C

MMD,(Q, P)? :/

X

where

33/59



MMD(Q, P) = ||szuFil [Eq[o(f)(X)]

/’EQ (X” dp(s

KSD 4 k(Q,P) = sup ZEQ[A enfn)(X)]

Ifllk<1,=5

- ; /X EqlA(e,eC9) (X[ du(s)

KSDax(Q,P) = sup Eq[Af(X)]
<1

= [ [Eola(e )01 diucs)
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Theorem

Under Assumption 1,2, k(x,y) = ji(x — y) and Q such that
EolllXlx], EQllCDU(X)||x] < oo

KSDAk(Q,P) = sup Eq[Af(X)] = sup ZEQ[A(en )(X)]

[fllk<1 Ifllk<

where f(x) = >0 1 enfa(x).

KSD.A(Q. PY Z [, [Eatacere 0] et

-

2

du(s)
Xc

CsO(s) + DO(s) + i / CDU(x)e =% dQ(x)
X
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Theorem

Under Assumption 1,2, k(x,y) = ii(x — y) and Q such that
EollI X131, EQlll CY2DU(X)|%] < oo if i has full support then
KSDAk(Q,P)=0 < Q=P.

Sketch Proof.
The integrand in the spectral representation is zero for all s if and
only if @ = P since it characterises the solution of a measure

equation whose unique solution is P [Bogachev and Rdckner, 1995,
Albeverio et al., 1999]. O
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Using the same limit argument as before

Theorem

Under Assumption 1,2, T € L(X) is injective and Q such that
Eo[l X|3], Eq[l| C2DU(X)|%] < oo then the SE-T and IMQ-T
kernels ensure KSD 4 k(Q, P)2 =0 <«<— Q=P
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MMD(Q, P) = ||szuFil [Eq[o(f)(X)]

/’EQ (X” dp(s

KSD 4 k(Q,P) = sup ZEQ[A enfn)(X)]

Ifllk<1,=5

- ; /X EqlA(e,eC9) (X[ du(s)

KSDax(Q,P) = sup Eq[Af(X)]
<1

= [ [Eola(e )01 diucs)
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Let X; be a Markov process with invariant measure P and
generator A then

EQOf(X)] = - /0 TEAF(XQ)dt
SO

MMD,(Q, P)? = / o [e (e"<v5>«v> (X)] E: du(s)

X
= [ || Bt dus)
X |1J0 C

KSDax(Q, P)? = /X EqlA( )| dis)

2

where X is the process with Xy ~ Q.
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Numerics
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KSD Estimator

{X,}NV_, ~ Q samples and the target measure is
P=e VXN

RSD(QP) = 75 >0 hXiX)

T IKi#<N

Use bootstrap to calculate rejection threshold
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Goodness-of-Fit
@ P will be Brownian motion over [0, 1]
@ Use SE-T and IMQ-T kernel

o Tl = I, T2X = Z?il 77,'<X7 e,-)Xe,- where ni = /\/_1 for
1 <i<50andn =1 fori>>50 with e;, \; the eigensystem
of Brownian motion

@ T, increasingly penalises deviations in higher frequencies
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@ N =50 and Q is the law of Brownian motion

@ N =50 and Q is the law of the Brownian motion clipped to 5
frequencies Z, 1 1/25,6, with & '~ g N(0,1) and A;, & from
the eigensystem of C as discussed above.

© N =25and Q is the law of the Ornstein-Uhlenbeck process
dX(t) = 0.5(5 — X(t))dt + dB(t)

Q@ N =25and Q is the law of 2B(t)
©@ N =25and Q is the law of B(t) + 1.5¢(t — 1)
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Experiment | SE-T; SE-T, IMQ-T; IMQ-T, SB
1 0.06 0.05 0.052 0.048 0.032
2 0.056 1.0 0.054 0.952  0.615
3 1.0 1.0 1.0 1.0 0.023

Table 1: Performance on Experiments 1-3, SB denotes the small-ball
probability method of [Bongiorno et al., 2018].

44 /59



Experiment || SE-T; SE-T, IMQ-T; IMQ-T, CvM SP CvM GP

6 0.858 0.786 0.332 0.206 0.895 0.763
7 0.522  0.99 0.608 0.87 0.98 0.858

Table 2: Performance on Experiments 4-5, CvM SP denotes the Cramér
von-Mises test based on spherical projections of [Ditzhaus and Gaigall,
2018] and CvM GP denotes the Cramér von-Mises test based on
Gaussian process projections of [Bugni et al., 2009].
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Conditioned Diffusion

@ The paths are the following SDE conditioned to start and end
at 0 over [0, 30]

dXt =0.7 Sln(Xt)dt + th

@ This is a Gibbs measure with N¢ being Brownian bridge
@ Very hard to sample from
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Numerics

N = 50, 50 tests, using T, as before, samples come from

X(t) + 6t/30

0 || SE-T2 IMQ-T,
0 0.06 0.04
05 0.12 0.10
1.0 0.42 0.38
15 0.68 0.7
2.0 0.98 0.98
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Two-Sample Testing

o Estimate MMD using {X;}", "~ P {¥;}, "% Q

— 1
MMD(P, Q) = —— h(Z:, Z;
( 9 Q) N(N _ 1) 1<I.#ZJ.<N ( 9 j)

where h(Z,',Zj) = k(Xi7Xj)+ k(Yf7 YJ) - k(Xf’ YJ) - k(Xj7 Yl)
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Experimental Setting
o X = L2([0,1])
@ Use SE-T kernel for two choices of T

° T=1Ix(ID)
o Tx(t)= fo s)ko(s, t)ds for a cosine-exponential kernel ko
(CEXP)

° k(x,y) = (x,y)% (COV)
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Mean Shift Experiment

Sample size N = 100, observed at 100 points on a grid over [0, 1]

X(t) ~ t + &85V 2sin(27t) + £85V/2 cos(2t)
Y(t) ~ X(t) + ot3

where &5 ~ N(0,10) and & ~ N(0,5).

Compare to Functional Anderson-Darling (FAD) test of [Pomann
et al., 2016]
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Variance Shift Experiment

Sample size if N = 25, observed at 500 points on a grid over [0, 1]

X(t) ~ i EXV/2sin(mnt) + ¥ V2 cos(mnt)
n=1
Y(t) ~ 0X(t)
where £X. X ~ ts.
Compare to bootstrapped Hilbert-Schmidt norm (BOOT-HS) test

of [Paparoditis and Sapatinas, 2016] and FPCA chi-squared
(FPCA-x?) test of [Fremdt et al., 2012].
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Higher Order Difference Experiment

Sample size is N = 15, observed at 20 random points on a grid
over [0, 1] with different sampling densities for X, Y. GP regression
was used to reconstruct the paths.

15
X(t) ~ ) e "2 un(t)
n=1
Y (£) ~ X(2) + 6026y (1)
where £X.¢Y ~ N(0,1), and v, 1% are trigonometric functions.

Compare to bootstrapped Cramér-von Mises (CVM) test of [Hall
and Keilegom, 2007] and FAD test.
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Conclusion
@ KSD and MMD can be adapted to Hilbert spaces

@ KSD and MMD are linked through Markov view
@ Many open questions

Different choices of ©

Bounds using Markov theory

Stein-Malliavin?

Hyper-parameters

Non-Hilbert?
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Thank you for listening!
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h(x,y) = k(x,y){x + CDU(x),y + CDU(y))x
— D1k(x,y)(Cy + C*DU(y))
— Dok(x,y)(Cx 4+ C?DU(x))

+) A DoDik(x, y)(er, )
i—1

For the SE-/ kernel this gives

h(x,y) = k(x,y) <<X + CDU(x),y + CDU(y))

—(C(x—y),x—y)
— (C(DU(x) — DU(y)),x — y)

L THC) — |C(x —y>||2)
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