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Representing functions from data

A basic problem in data science is to model real valued functions on sets
from data. To transition from pairs (xi , yi ) ∈ X ×R to f ∈ C (X ). It is a
deep and substantial topic but still it is worth looking for a moment at the
abstract foundations. One core step is to represent the data

A feature map is

A bijective representation φ of a set X onto K ⊂ E where E is a linear
space.
A feature map is universal if φ can approximately linearise functions!

E ∗|K = C (K )

For example K three points in 2 dimensions; product of linear functions
is linear!
Theory of Choquet simplexes
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Kernels

Kernels form a useful tool in machine learning, they offer concrete
approaches to resolving the core problem, and also can be very useful in
reducing the dimension and complexity of calculations

What is a kernel?

A set X embedded into E and E ∗

φ : X ↪→ E

ψ : X ↪→ E ∗

then one gets K (x , x ′) := 〈φ (x) , ψ (x ′)〉 and conversely.
Amari’s statistical manifolds of probability measures all have this
property

P 4µ → Lp (µ)

pdµ → p1/p

Sometimes a Hilbert space (e.g. p = 2 in Amari)
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Kernel based regression

Although there are many issues, one cannot deny the convenience of
kernels. For every data point one gets a new function on points:
K (x , x ′) := 〈φ (x) , ψ (x ′)〉.

Kernels are useful for regression and machine learning

Some real observational data (xj , yj )j=1...N then solve this system

yj = ∑
k=1...N

λkK (xj , xk )

to express
the observed function in terms of the kernel functions ψ (xi ) ∈ E ∗.

F (·) := ∑
k=1...N

λkK (·, xk )

Crucially this calculation only depends on the N2 numbers K (xj , xk )
and does not need the embedding - E can be infinite dimensional.
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Inner products

It is not clear that kernels should induce inner products, but when they do,
one can use Gaussian tricks. Symmetric kernels are an essential
component in algorithms for pattern analysis (Bishop, 1995; Hastie et al.,
2001; Scholköpf and Smola, 2002)

suppose we have a symmetric and universal kernel

Consider a gaussian random variable X
′

on E ∗ with co-variance given
by the inner product on E .

E
[
X ′ (x1)X

′ (x2)
]
=< x1, x2 >, x1, x2 ∈ E

A measure on functions (images).

Can sample from the conditional distribution of X
′

given the
evaluations (xj , yj )j=1...N .

Allows interpolation - get a random function defined everywhere and
consistent with the monochrome data.
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Tensor algebras

Let E be d-dimensional Banach space with basis E = {e1, . . . , ed}.
Denote by

T (E ) =
∞⊕

k=0

E⊗k

and

T ((E )) =
∞

∏
k=0

E⊗k

the spaces of formal polynomials, power series in the letters from E .

T () and T (()) are functors from the category of vector spaces to that
of algebras
moreover T (E ∗) ⊂ T ((E ))∗.
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From alphabets to Hilbert spaces

The basis E = {e1, . . . , ed} ⊂ E induces structure on T ((E )).
A basis for E⊗n is the words of length n with letters drawn from the
alphabet E :

{eK = ek1 ⊗ . . .⊗ ekn}K=(k1,...,kn)∈{1,...,d}n

The choice of E induces an inner product on E , E⊗n, T (E ), T ((E )).

〈ei1 ⊗ . . .⊗ ein , ej1 ⊗ . . .⊗ ejn 〉 = δi1,j1 . . . δin,jn , δij =

{
1, if i = j ,

0, if i 6= j .

Making the canonical projection
πn : T = (T 0,T 1, . . . ,T n, . . .)→ T n ∈ E⊗n orthogonal.

The inner product is
Defined for A,B ∈ T ((E )) as

〈A,B〉 =
∞

∑
n=0

〈πn(A), πn(B)〉
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The signature as a universal feature set for
unparameterised paths

Suppose that x is a finite stream of information defined on [s, t] with
features in the vector space E

The signature is the solution of the universal differential equation
driven by x

dS(x)s,u = S(x)s,u ⊗ dxu , S(x)s,s = 1 = (1, 0, 0, . . .)

S(x)s,t = 1 +
∫ t

s
S(x)s,u ⊗ dxu, S(x)s,s = 1 = (1, 0, 0, . . .)

Informs about the stream x |[s,t] through the response S(x)s,t of the
exponential nonlinear system. (meaning without maths).
If E is the formal span of a finite alphabet A = {a1,...,an} then
S ∈ T ((E )) the space of infinite formal linear combinations of words
with letters drawn from A. The solution lives in a vector space. S is a
feature map!
S does not depend on the parameterisation of the path segment. It is a
powerful nonlinear filter that removes sampling rate from data and
faithfully preserves the order of events, the curve. Hambly, Lyons 2010
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Signature Kernels

Signatures exist over any interval and (for rough paths) decay factorially.

Suppose that x , X are rough paths/streams of finite 1 and p variation
over [s, t] and controlled by wx , wX;Let (s1, s2) ⊂ [s, t]

then x , X have signatures:

(s1, s2) 7→ S(xs1,s2) = (1, x1s1,s2 , . . . , . . . , . . . , xms1,s2 , . . .) ∈ T ((E ))

(s1, s2) 7→ S(Xs1,s2) = (1, X1
s1,s2 , . . . , X

bpc
s1,s2 , . . . , Xm

s1,s2 , . . .) ∈ T ((E ))

they are multiplicative functionals
and they have factorial decay (neoclassical inequality)

||xks1,s2 ||E⊗k ≤ ωx (s1, s2)

k !
, ∀(s1, s2) ∈ ∆I

||Xk
s1,s2 ||E⊗k ≤ ωX(s1, s2)

k/p

βp(k/p)!
, ∀(s1, s2) ∈ ∆I

For any two unparameterised rough paths X and Y the signature
kernel K (X, Y) := 〈S(XI ), S(YJ)〉 is always well defined.
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Oberhauser and Kiraly

In their paper Kernels for Sequentially Ordered Data (Franz J. Kiraly,
Harald Oberhauser; JMLR 20(31):1-45, 2019) Franz and Harald
observed that a kernel on the space carrying the data always implies a
kernel on truncated signatures of sequences in the implied linear
space, and importantly

they use dynamic programming and low-rank techniques to
demonstrate that for the truncated signature kernel and bounded
variation paths there were efficient algorithms to compute this
truncated kernel.
Harald, with his student Csaba, Bayesian Learning from Sequential
Data using Gaussian Processes with Signature Covariances. (Toth,
Csaba, and Harald Oberhauser., ICML in press (2020)) explored the
practical ramifications of this kernel in a range of practical contexts
and demonstrate its value.
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Our work - the Goursat PDE

It is easy to see that, unlike the truncated signature, the full signature
kernel is universal, but calculating it directly would seem to involve infinite
series of integrals with exponentially increasing numbers of terms.

This talk is based on Computing the full signature kernel as the
solution of a Goursat problem (Thomas Cass, Terry Lyons, Cristopher
Salvi, Weixin Yang https://arxiv.org/abs/2006.14794)

We derive a PDE. evaluating the full signature kernel between two
unparameterised paths
In the paper we further establish the PDE is well defined, has numerics
and solutions for any rough streams. It is an interesting ”S”PDE!
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The basic statement

Theorem

Let I = [u, u′] and J = [v , v ′] be two closed time intervals and let
x ∈ C 1(I ,E ) and y ∈ C 1(J,E ). Consider the bilinear form
kx ,y : I × J → R defined as follows

kx ,y : (s, t) 7→ 〈S(x)s ,S(y)t〉

then kx ,y is a solution of the following linear hyperbolic PDE

∂2kx ,y
∂s∂t

= 〈ẋs , ẏt〉kx ,y

with initial conditions kx ,y (u, ·) = kx ,y (·, v) = 1 and where ẋs =
dxp
dp |p=s

and ẏt =
dxq
dq |q=t .
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The derivation

Clearly, for any t ∈ J we have kx ,y (u, t) = 〈S(x)uu,S(y)vt〉 = 1 and for
any s ∈ I , kx ,y (s, v) = 1

kx ,y (s, t) = 〈S(x)us , S(y)vt〉

= 〈1 +
∫ s

p=u
S(x)up ⊗ dxp, 1 +

∫ t

q=v
S(y)vq ⊗ dyq〉

= 1 + 〈
∫ s

p=u
S(x)up ⊗ ẋpdp,

∫ t

q=v
S(y)vq ⊗ ẏqdq〉

= 1 +
∫ s

p=u

∫ t

q=v
〈S(x)up ⊗ ẋp, S(y)vq ⊗ ẏq〉dpdq

= 1 +
∫ s

p=u

∫ t

q=v
〈S(x)up, S(y)vq〉〈ẋp, ẏq〉dpdq

= 1 +
∫ s

p=u

∫ t

q=v
〈S(x)up, S(y)vq〉〈ẋp, ẏq〉dpdq

= 1 +
∫ s

p=u

∫ t

q=v
kx ,y (p, q)〈ẋp, ẏq〉dpdq
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The Equation continued

By the fundamental theorem of calculus we can differentiate

1 +
∫ s

p=u

∫ t

q=v
kx ,y (p, q)〈ẋp, ẏq〉dpdq

firstly with respect to s

∂kx ,y (s, t)

∂s
=
∫ t

q=v
kx ,y (s, q)〈ẋs , ẏq〉dq

and then with respect to t to obtain the desired linear hyperbolic PDE

∂2kx ,y (s, t)

∂s∂t
= 〈ẋs , ẏt〉kx ,y (s, t)
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Goursat

Theorem (Lees 1960 (Goursat 1916) Theorems 2 & 4)

Let σ : I → R and τ : J → R be two absolutely continuous functions
whose first derivatives are square integrable and such that σ(u) = τ(v).
Let C1,C2,C3 : D → R be a bounded and measurable over D and
C4 : D → R be square integrable. Then there exists a unique function
u : D → R such that u(s, v) = σ(s), u(u, t) = τ(t) and (almost
everywhere on D)

∂2u

∂s∂t
= C1(s, t)

∂u

∂s
+ C2(s, t)

∂u

∂t
+ C3(s, t)u + C4(s, t)

If in addition Ci ∈ Cp−1(D) (i = 1, 2, 3, 4) and σ and τ are Cp, then the
unique solution u : D → R of the Goursat problem is of class Cp.

Set C1 = C2 = C4 = 0 and C3(s, t) = 〈ẋs , ẏt〉 .If the two input paths x , y
are Cp then their derivatives will be of class Cp−1 and therefore the
solution kx ,y will be of class Cp. Finite difference approximation works.

Cris Salvi (DataSig) Signature kernel - a PDE 02/07/20 15 / 18



The numerics

Figure: Example of error distribution of kx,y (s, t) on the whole grid (s, t) ∈ D.
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The analysis

The equation in the bounded variation case is already useful.

A challenge is to make sense of

the equation when paths are rougher:

∂2kx,y (s, t) = 〈dxs , dyt〉kx,y (s, t)

Since k makes sense it is reasonable that one can.
One successful approach (see the paper) is

to make a common parameterisation of x and y
use the extension theorem to add the cross integrals to make x and y
jointly a rough path
solve the second order rough ode
show that the solution was independent of the choice of extension.
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The end

Thank you!
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