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OVERVIEW 

Motivations and Intuitions 



DEEP LEARNING REVOLUTION 

 It changes the research landscape of machine 

learning and artificial intelligence in general. 
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• Its impact has now spread 

to many fields in natural 

science, social science and 

engineering 

• This talk’s focus: ML + 

Scientific Computing 



CHALLENGES OF DEEP LEARNING 

 Deep learning has been a great success 

 It is particularly good at fitting complex mapping and 

making fast inference with about right accuracy. 

 However, there are still many pending issues 

 Generalization (inner workings of stochastic training) 

 Model robustness (adversarial, distribution shift) 

 Interpretability (can we learn from the model) 

 A promising perspective:  

 Combine handcraft and data-driven models 

 Optimal control is a suitable framework 
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DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 

•Lu, Zhong, Li, Dong, ICML 2018.  



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

• Optimization Alg = Architecture 

 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 

•Lu, Zhong, Li, Dong, ICML 2018.  

•Gregor, LeCun, ICML 2010.  

•Yang, Sun, Li, Xu, NIPS 2016.  

•Li, Tai, E, ICML 2017. 

•Liu, Theodorou, arXiv:1908.10920. 

•Monga, Li, Yonina, IEEE Signal 

Processing Magazine, 38(2), 2021. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

• Optimization Alg = Architecture 

• Discrete PDEs = Architecture 

• Inverse Problems 

• Solving PDEs 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

PDE-Net 

•Chen, Wei, Pock, CVPR 2015. 

•Long, Lu, Ma, Dong, ICML 2018.  

•Long, Lu, Dong, JCP, 399, 2019. 

•Ray, Hesthaven, JCP, 367, 2018 

•Han, Jentzen, E, PNAS, 115(34), 2018. 

•Bar-Sinai, Hoyer, Hickey, Brenner,. 

PNAS,116(31),  2019 

•Arridge, Maass, Öktem, Schönlieb, 

Acta Numerica, 28, 2019. 

•Many others … …  



LEARNING TO CLOSE MOMENT 

SYSTEMS OF BOLTZMANN-BGK 

EQUATION 

• Zhengyi Li, Bin Dong and Yanli Wang, Learning Invariance 

Preserving Moment Closure Model for Boltzmann-BGK 

Equation, arXiv:2110.03682, 2021. 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Boltzmann equation describes the dynamics of a 

rarefied gas and has important applications in 

various fields of science and engineering.  

𝜕𝑡𝑓 + 𝑣 ⋅ 𝛻𝑥𝑓 = 𝑄 𝑓 , 𝑡, 𝑥, 𝑣 ∈  [0, ∞) × ℝ3 × ℝ3 

 Challenge: high-dimensionality 

 Numerical methods for Boltzmann 

 Stochastic method: e.g., direct simulation of Monte 

Carlo method (DSMC) 

 Deterministic method: e.g., discretized velocity method 

(DVM), spectral method, moment method 

 This work focuses on learning neural network 

based moment closure for 1D Boltzmann-BGK  

 

 

 

12 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 1D Boltzmann-BGK equation  

 

 

 

 

 The moment closure problem (following the setting of Cai, 

Fan, Li, CPAM 2014) 
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where 𝜌, 𝑢, 𝜃 are density, macroscopic 

velocity, and temperature respectively  



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Mathematical approach 
 Grad method (H. Grad, CPAM 1949) 

 Maximum entropy closure (C. D. Levermore, JSP 1996; M. Junk, JSP 1998; J. 
McDonald and M. Torrilhon, JCP 2013) 

 Quadrature based closure (R.O. Fox, JCP 2008&2009;) 

 Hyperbolic moment method (Z. Cai, Y. Fan, R. Li., CPAM 2014; J. 
Koellermeier, R. Schaerer and M. Torrilhon, KRM 2014) 

 Machine learning approach 

 Learning closure: 
 J. Han et al., PNAS, 2019. 

 L. Bois et al., arXiv:2011.06242. 

 W. Porteous, M. Laiu, C. Hauck., arXiv:2106.08973. 

 S. Schotthofer et al., arXiv:2106.09445. 

 Solving Boltzmann directly: 
 T. Xiao and M. Frank, JCP, 2021. 

 Q. Lou, X. Meng, G. Karniadakis, JCP, 2021. 

 Closure of RTE:  
 J. Huang et al. arXiv:2105.05690, arXiv:2105.14410, arXiv:2109.00700. 
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Invariance preserving neural closure (IPNC) 
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Achieving Galilean, reflection and scaling invariance. 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Training of IPNC 

 

 

16 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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• Parameters randomly generated 

• Training set generated by DVM for 

𝑥 ∈ −0.5,0.5 , 𝑡 ∈ [0,0.1] (same as 

in Han et al. PNAS 2019) 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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𝑲𝒏 = 𝟔. 𝟐; 𝒕 = 𝟎. 𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Generalization: trained on discontinuous initial 

conditions and generalize to Sod’s shock tube 

without retraining. 
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𝑲𝒏 = 𝟏 

𝒕 = 𝟎. 𝟏 

𝑲𝒏 = 𝟏𝟎 

𝒕 = 𝟎. 𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Shock structure: trained on small 𝑀𝑎 < 7 and 

generalize to larger 𝑀𝑎 = 21 without retraining. 
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𝑲𝒏 = 𝟎. 𝟏; 𝑴𝒂 = 𝟕 

𝑲𝒏 = 𝟎. 𝟏; 𝑴𝒂 = 𝟐𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Enforcing invariances help with generalization: both 

in-distribution (ID) and out-of-distribution (OoD). 
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• iD: train on wave & test on wave; train on Mix & test on Mix 

• OoD: all other cases 



LEARNING TO SOLVE PDES 
A brief review 



NEURAL NETWORKS (NNS) AND NUMERICAL 

PDES – A HIGHLY INCOMPLETE LIST 

 NN as a new ansatz of solution 𝑢: 
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017. 

 J. Han, A. Jentzen, W.E. CMS, 5, 349–380, 2017. 

 W. E and B. Yu, CMS, 6(1), 1-12, 2018. 

 Sirignano and Spiliopoulos, JCP, 375:1339-1364, 2018. 

 M. Raissi et al., JCP, 378:686–707, 2019. 

 Y. Zhang et al., arXiv:1907.08272. 

 D. Pfau et al., arXiv:1909.02487. 

 W. Cai and Z. Xu, arXiv:1910.11710. 

 Z. Liu, W. Cai, Z. Xu, arXiv:2007.11207. 

 NN as a new ansatz of solution mapping 𝒮: 
 Integration with classical solvers 

 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018. 

 Y. Bar-Sinai et al., PNAS, 116 (31), 15344–15349, 2019 

 N. Discacciati et al., JCP, p. 109304, 2020. 

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.  

 Y. Wang et al., CiCP, 28, 2158-2179, 2020.  

 Direct approximation 
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351. 

 Z. Long et al., ICML 2018. 

 L. Lu, P. Jin, G. E. Karniadakis, arXiv:1910.03193. 

 K. Wu and D. Xiu, arXiv:1910.06948. 

 Z. Li et al., arXiv:2010.08895. 

 S. Cao, arXiv:2105.14995. 

-  Consider ℒ 𝑢 = 0. 
-  Use ansatz 𝑢 ≈ 𝑢Θ(𝒙, 𝑡) 

-  Loss: ℒ 𝑢Θ 2
2, 𝐸(𝑢Θ), etc. 

(𝒙, 𝑡) 𝑢𝜃(𝒙, 𝑡) 

- Consider ℒ 𝑢; 𝜼 = 0. 

-  Start with a PDE solver 

𝒮: 𝜼 ↦ 𝑢; 𝒮 = 𝒮1 ∘ 𝒮2 ∘ ⋯ ∘ 𝒮𝐾 

-  Replace 𝒮𝑘𝑗
 by NNs 

-  Consider ℒ 𝑢; 𝜼 = 0.  

-  Classical solver: 

𝒮: 𝜼 ↦ 𝑢 

-  Approximation: 

𝒮 ≈ ℱ 𝜂; Θ  



A META-LEARNING APPROACH 

FOR PARAMETRIZED PDES 
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta 

Multigrid Networks for Solving Parameterized Partial 

Differential Equations, arXiv:2010.14088, 2020. 



PARAMETERIZED PARTIAL DIFFERENTIAL 

EQUATIONS (PDES) 

 General parameterized PDEs: 

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0 

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0 

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼  

 Others 

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚 

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝 

 Linear steady parameterized PDEs: 

 

 e.g. 

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃) 
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APPLICATIONS THAT REQUIRE EFFICIENT 

SOLVERS FOR PARAMETERIZED PDES 

 Typical parameters of interest 

 Shape parameters 

 Material (properties) parameters 

 Operation parameters (e.g. flight conditions, cruise 

conditions, etc.) 

 Initial and boundary conditions 

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼 

 Inverse problems 

 Uncertainty quantification 

 Design optimization 

 Optimal control 

 Model predictive control  

Model predictive 

control 



MULTIGRID METHOD FOR LINEAR 

PROBLEMS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 For example 
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META-LEARNING - MOTIVATION 

 Single task: learning a solver for a given 𝜼 

 Multi-task: learning a solver for a set of 𝜼 

 Key difference from supervised learning strategy: 

 Leveraging common structures hidden in the tasks! 

 Effective approach: Meta-Learning 

 Finding a good initialization for all tasks  

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018) 

 Designing a hypernetwork to infer suitable 

parameters for each task  

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim, 

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 29 



META-MGNET 

 Introducing a hypernetwork (Meta-NN) in MgNet (Xu 

& He 2019) 

 

 Meta-NN induces a smoother adaptive to 𝜼 
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Meta-NN：  
Input: 

• Kernel of the operator 𝑨𝜼 

• Residual 𝒓 

Output: a set of vectors that 

spans a subspace for subspace 

correction 

𝓖𝜽(𝒓, 𝑨𝜼) 



META-MGNET 

 Introducing a hypernetwork (Meta-NN) in MgNet (Xu 

& He 2019) 

 

 Meta-NN induces a smoother adaptive to 𝜼 

 Motivation: Krylov subspace 

 

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 , 

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸 

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽 

 Convergence guarantee for Poisson problem √ 
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EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 32 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  
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Meta-MgNet 
×7 speedup  



ELECTROMAGNETIC SIMULATION 
• Jointly with Huawei MindSpore AI + Scientific Computing 

team 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: BACKGROUND 

 Motivations: Electromagnetic simulation (solution of Maxwell 

equations) is widely used in the design of mobile phones and chips. 

 

 

 

 Traditional v.s. machine learning approaches 
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Challenges for machine learning methods:  

a) Efficient data conversion: Domain data needs to be efficiently converted into AI-affinity tensor data.  

b) Memory and computation: A single sample requires several GB video memory, and a single 

convolutional layer computation exceeds 400 GFLOPs.  

c) Generalization: The model needs to handle different structures and materials and produce errors 

under 10% compared with commercial software. 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Meta Auto-Decoder (MAD) for solving parametric PDEs  

 Parameterized PDEs:  

 Pretrain stage: 

 

 

 Fine-tune stage: 

 

 Manifold learning interpretation of MAD 
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• 𝓤 is a function space contains all solutions of 

the parametric PDEs 

• 𝓐 is the space of all parameters 𝜂 

• 𝓩 is the space of latent variables 

• 𝐺 𝓐 = 𝑢𝜂: 𝜂 ∈ 𝓐  is the set of all solutions 

• 𝐺𝜃 𝓩 = 𝑓𝜃 𝑥, 𝑧 : 𝑧 ∈ 𝓩   approximates 𝐺 𝓐  

• For any 𝜂, there exists 𝑧, such that  

𝐺𝜃 𝑧 − 𝐺 𝜂 𝓤 < 𝛿 (Assumption) 

• Fixed 𝜃: Park et al., CVPR 2019 

arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Network architecture of MAD: 𝑓𝜃(𝑥, 𝑧) 

 

 

 

 

 

 

 

 PINN loss (Raissi, Perdikaris, Karniadakis, 2019): 

 

 

37 

arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Demonstration of MAD on a simple example 

 

 

 

 Pre-training and fine-tuning of MAD 
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arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Descriptions on typical scenario I 

 

 

 

 

 

 Results: Implemented on MindSpore and NPU/GPU. The relative error of 

the electromagnetic field is ≈ 𝟏𝟎% with × 𝟐𝟎 speedup over PINN. 
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FDTD 

Auto-decoder 

Error map 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO II 

 Task: Learn a direct mapping between mobile device structures and S-

parameters based on historical data gathered by Huawei Device Co., Ltd. 

 

 

 

 

 Methodology: efficient data sampling, grid data compression, and neural 

architecture design to facilitate structural/material generalization. 

 Results: Implemented on MindSpore and NPU/GPU. The relative error of 

the S-parameter is far less than 𝟏𝟎% with × 𝟑𝟎 speedup. 
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MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: MINDSPORE 

 MindSpore architecture (open source)： 

 https://www.mindspore.cn   

 https://gitee.com/mindspore  
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https://www.mindspore.cn/
https://gitee.com/mindspore


CONCLUSIONS AND FUTURE DIRECTIONS 

 Deep learning ≈ optimal control. 

 This grants a framework to combine learning and 

handcraft modeling 

 Start with your favorite dynamics; 

 Identify the component(s) that is hard to handcraft; 

 Replace it by a deep neural network; 

 Pick a loss function and training algorithm; 

 Hope for the best and prepare for the worst.  

 End-to-end mapping: significant speed up for a 

given task, but requires data and incorporate 

domain knowledge. 
42 



THANKS FOR YOUR 

ATTENTION! 
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