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OVERVIEW 

Motivations and Intuitions 



DEEP LEARNING REVOLUTION 

 It changes the research landscape of machine 

learning and artificial intelligence in general. 
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• Its impact has now spread 

to many fields in natural 

science, social science and 

engineering 

• This talk’s focus: ML + 

Scientific Computing 



CHALLENGES OF DEEP LEARNING 

 Deep learning has been a great success 

 It is particularly good at fitting complex mapping and 

making fast inference with about right accuracy. 

 However, there are still many pending issues 

 Generalization (inner workings of stochastic training) 

 Model robustness (adversarial, distribution shift) 

 Interpretability (can we learn from the model) 

 A promising perspective:  

 Combine handcraft and data-driven models 

 Optimal control is a suitable framework 
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DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 

•Lu, Zhong, Li, Dong, ICML 2018.  



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

• Optimization Alg = Architecture 

 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

•Han, E, NIPS DRL Workshop, 2016 

•E, CMS, 5(1):1–11, 2017. 

•Haber, Ruthotto, IP, 34(1), 2017. 

•Lu, Zhong, Li, Dong, ICML 2018.  

•Gregor, LeCun, ICML 2010.  

•Yang, Sun, Li, Xu, NIPS 2016.  

•Li, Tai, E, ICML 2017. 

•Liu, Theodorou, arXiv:1908.10920. 

•Monga, Li, Yonina, IEEE Signal 

Processing Magazine, 38(2), 2021. 



DEEP LEARNING FROM CONTROL 

PERSPECTIVE 

 Control Perspective: 
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Dynamics: 

Training loss: 

• ResNet = Forward-Euler (𝝈 = 𝟎) 

• Discrete ODEs = Architecture 

• Optimization Alg = Architecture 

• Discrete PDEs = Architecture 

• Inverse Problems 

• Solving PDEs 

𝒙𝑘+1 = 𝒙𝑘 + 𝒇(𝒙𝑘 , 𝑡𝑘) 

PDE-Net 

•Chen, Wei, Pock, CVPR 2015. 

•Long, Lu, Ma, Dong, ICML 2018.  

•Long, Lu, Dong, JCP, 399, 2019. 

•Ray, Hesthaven, JCP, 367, 2018 

•Han, Jentzen, E, PNAS, 115(34), 2018. 

•Bar-Sinai, Hoyer, Hickey, Brenner,. 

PNAS,116(31),  2019 

•Arridge, Maass, Öktem, Schönlieb, 

Acta Numerica, 28, 2019. 

•Many others … …  



LEARNING TO CLOSE MOMENT 

SYSTEMS OF BOLTZMANN-BGK 

EQUATION 

• Zhengyi Li, Bin Dong and Yanli Wang, Learning Invariance 

Preserving Moment Closure Model for Boltzmann-BGK 

Equation, arXiv:2110.03682, 2021. 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Boltzmann equation describes the dynamics of a 

rarefied gas and has important applications in 

various fields of science and engineering.  

𝜕𝑡𝑓 + 𝑣 ⋅ 𝛻𝑥𝑓 = 𝑄 𝑓 , 𝑡, 𝑥, 𝑣 ∈  [0, ∞) × ℝ3 × ℝ3 

 Challenge: high-dimensionality 

 Numerical methods for Boltzmann 

 Stochastic method: e.g., direct simulation of Monte 

Carlo method (DSMC) 

 Deterministic method: e.g., discretized velocity method 

(DVM), spectral method, moment method 

 This work focuses on learning neural network 

based moment closure for 1D Boltzmann-BGK  
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 1D Boltzmann-BGK equation  

 

 

 

 

 The moment closure problem (following the setting of Cai, 

Fan, Li, CPAM 2014) 
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where 𝜌, 𝑢, 𝜃 are density, macroscopic 

velocity, and temperature respectively  



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Mathematical approach 
 Grad method (H. Grad, CPAM 1949) 

 Maximum entropy closure (C. D. Levermore, JSP 1996; M. Junk, JSP 1998; J. 
McDonald and M. Torrilhon, JCP 2013) 

 Quadrature based closure (R.O. Fox, JCP 2008&2009;) 

 Hyperbolic moment method (Z. Cai, Y. Fan, R. Li., CPAM 2014; J. 
Koellermeier, R. Schaerer and M. Torrilhon, KRM 2014) 

 Machine learning approach 

 Learning closure: 
 J. Han et al., PNAS, 2019. 

 L. Bois et al., arXiv:2011.06242. 

 W. Porteous, M. Laiu, C. Hauck., arXiv:2106.08973. 

 S. Schotthofer et al., arXiv:2106.09445. 

 Solving Boltzmann directly: 
 T. Xiao and M. Frank, JCP, 2021. 

 Q. Lou, X. Meng, G. Karniadakis, JCP, 2021. 

 Closure of RTE:  
 J. Huang et al. arXiv:2105.05690, arXiv:2105.14410, arXiv:2109.00700. 
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Invariance preserving neural closure (IPNC) 
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Achieving Galilean, reflection and scaling invariance. 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Training of IPNC 
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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• Parameters randomly generated 

• Training set generated by DVM for 

𝑥 ∈ −0.5,0.5 , 𝑡 ∈ [0,0.1] (same as 

in Han et al. PNAS 2019) 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Experiments: discontinuous initial conditions 
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𝑲𝒏 = 𝟔. 𝟐; 𝒕 = 𝟎. 𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Generalization: trained on discontinuous initial 

conditions and generalize to Sod’s shock tube 

without retraining. 
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𝑲𝒏 = 𝟏 

𝒕 = 𝟎. 𝟏 

𝑲𝒏 = 𝟏𝟎 

𝒕 = 𝟎. 𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Shock structure: trained on small 𝑀𝑎 < 7 and 

generalize to larger 𝑀𝑎 = 21 without retraining. 
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𝑲𝒏 = 𝟎. 𝟏; 𝑴𝒂 = 𝟕 

𝑲𝒏 = 𝟎. 𝟏; 𝑴𝒂 = 𝟐𝟏 



LEARNING TO CLOSE MOMENT SYSTEMS OF 

BOLTZMANN-BGK EQUATION 

 Enforcing invariances help with generalization: both 

in-distribution (ID) and out-of-distribution (OoD). 
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• iD: train on wave & test on wave; train on Mix & test on Mix 

• OoD: all other cases 



LEARNING TO SOLVE PDES 
A brief review 



NEURAL NETWORKS (NNS) AND NUMERICAL 

PDES – A HIGHLY INCOMPLETE LIST 

 NN as a new ansatz of solution 𝑢: 
 C. Beck, W. E, A. Jentzen. JNS, 1–57, 2017. 

 J. Han, A. Jentzen, W.E. CMS, 5, 349–380, 2017. 

 W. E and B. Yu, CMS, 6(1), 1-12, 2018. 

 Sirignano and Spiliopoulos, JCP, 375:1339-1364, 2018. 

 M. Raissi et al., JCP, 378:686–707, 2019. 

 Y. Zhang et al., arXiv:1907.08272. 

 D. Pfau et al., arXiv:1909.02487. 

 W. Cai and Z. Xu, arXiv:1910.11710. 

 Z. Liu, W. Cai, Z. Xu, arXiv:2007.11207. 

 NN as a new ansatz of solution mapping 𝒮: 
 Integration with classical solvers 

 D. Ray, J. S Hesthaven. JCP, 367:166–191, 2018. 

 Y. Bar-Sinai et al., PNAS, 116 (31), 15344–15349, 2019 

 N. Discacciati et al., JCP, p. 109304, 2020. 

 Y. Feng, T. Liu, K. Wang, JSC, 83(21), 2020.  

 Y. Wang et al., CiCP, 28, 2158-2179, 2020.  

 Direct approximation 
 Y. Khoo, J. Lu, L. Ying. arXiv:1707.03351. 

 Z. Long et al., ICML 2018. 

 L. Lu, P. Jin, G. E. Karniadakis, arXiv:1910.03193. 

 K. Wu and D. Xiu, arXiv:1910.06948. 

 Z. Li et al., arXiv:2010.08895. 

 S. Cao, arXiv:2105.14995. 

-  Consider ℒ 𝑢 = 0. 
-  Use ansatz 𝑢 ≈ 𝑢Θ(𝒙, 𝑡) 

-  Loss: ℒ 𝑢Θ 2
2, 𝐸(𝑢Θ), etc. 

(𝒙, 𝑡) 𝑢𝜃(𝒙, 𝑡) 

- Consider ℒ 𝑢; 𝜼 = 0. 

-  Start with a PDE solver 

𝒮: 𝜼 ↦ 𝑢; 𝒮 = 𝒮1 ∘ 𝒮2 ∘ ⋯ ∘ 𝒮𝐾 

-  Replace 𝒮𝑘𝑗
 by NNs 

-  Consider ℒ 𝑢; 𝜼 = 0.  

-  Classical solver: 

𝒮: 𝜼 ↦ 𝑢 

-  Approximation: 

𝒮 ≈ ℱ 𝜂; Θ  



A META-LEARNING APPROACH 

FOR PARAMETRIZED PDES 
• Yuyan Chen, Bin Dong and Jinchao Xu, Meta-MgNet: Meta 

Multigrid Networks for Solving Parameterized Partial 

Differential Equations, arXiv:2010.14088, 2020. 



PARAMETERIZED PARTIAL DIFFERENTIAL 

EQUATIONS (PDES) 

 General parameterized PDEs: 

ℒ 𝑢, 𝒙, 𝑡; 𝜼 = 0, 𝑥 ∈ Ω ⊂ ℝ𝑑 , 𝑡 ≥ 0 

 Boundary condition: ℬ 𝑢, 𝒙𝐵𝐶 , 𝑡; 𝜼 = 0 

 Initial condition: 𝑢0 = 𝑢𝐼𝐶 𝒙; 𝜼  

 Others 

 State variable: 𝒖 = 𝒖 𝒙, 𝑡; 𝜼 ∈ ℝ𝑚 

 Parameter vector: 𝜼 ∈ 𝑫 ⊂ ℝ𝑝 

 Linear steady parameterized PDEs: 

 

 e.g. 

2D anisotropic diffusion equation with 𝜼 = (𝜀, 𝜃) 
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APPLICATIONS THAT REQUIRE EFFICIENT 

SOLVERS FOR PARAMETERIZED PDES 

 Typical parameters of interest 

 Shape parameters 

 Material (properties) parameters 

 Operation parameters (e.g. flight conditions, cruise 

conditions, etc.) 

 Initial and boundary conditions 

 Scenarios require solving 𝒖(𝜼) for multiple 𝜼 

 Inverse problems 

 Uncertainty quantification 

 Design optimization 

 Optimal control 

 Model predictive control  

Model predictive 

control 



MULTIGRID METHOD FOR LINEAR 

PROBLEMS 

 We focus on the linear problem: 𝑨𝜼𝒖 = 𝒇 

 Multigrid method (MG) has linear complexity 

 However, CPU time for MG can go up 

significantly when 𝜼 is within certain range 

 For example 
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META-LEARNING - MOTIVATION 

 Single task: learning a solver for a given 𝜼 

 Multi-task: learning a solver for a set of 𝜼 

 Key difference from supervised learning strategy: 

 Leveraging common structures hidden in the tasks! 

 Effective approach: Meta-Learning 

 Finding a good initialization for all tasks  

(Finn, Abbeel and Levine, 2017; Nichol, Achiam and Schulman, 2018) 

 Designing a hypernetwork to infer suitable 

parameters for each task  

(Ha, Dai and Le, 2016; Lorraine and Duvenaud, 2018; Brock, Lim, 

Ritchie and Weston, 2017;Zhang, Liu, Yu and Dong, 2020) 29 



META-MGNET 

 Introducing a hypernetwork (Meta-NN) in MgNet (Xu 

& He 2019) 

 

 Meta-NN induces a smoother adaptive to 𝜼 
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Meta-NN：  
Input: 

• Kernel of the operator 𝑨𝜼 

• Residual 𝒓 

Output: a set of vectors that 

spans a subspace for subspace 

correction 

𝓖𝜽(𝒓, 𝑨𝜼) 



META-MGNET 

 Introducing a hypernetwork (Meta-NN) in MgNet (Xu 

& He 2019) 

 

 Meta-NN induces a smoother adaptive to 𝜼 

 Motivation: Krylov subspace 

 

 Meta-NN: 𝒢𝜽 𝑟, 𝐴𝜂 = 𝒩𝐹𝐶𝜽(𝐴𝜂) 𝑟 , 

 𝒩𝜸 is a 3-layer dense-net block (Huang et al. 2017) with parameter 𝜸 

 𝐹𝐶𝜽 is a 2-layer fully connected neural network with parameter 𝜽 

 Convergence guarantee for Poisson problem √ 
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EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Training:  

 𝜃 = 0, lg
1

𝜀
∼ 𝒰 0,5  

 randomly generate 100 right-hand-side function 𝑓 ∼ 𝒩 0,1 . 

 Testing:  

 𝜃 = 0, 𝜀 = 10−𝑙 , 𝑙 = 0,1, … , 5 (in-distribution generalization) 

 randomly generate 10 right-hand-side function 𝑓 ∼ 𝒩 0,1  

 select stopping criteria  

 

 Report mean±std of number of iterations and computation 

time for each experiment with each compared algorithm 32 



EXPERIMENTS 

 2D anisotropic diffusion equation 

 

 

 Results:  
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Meta-MgNet 
×7 speedup  



ELECTROMAGNETIC SIMULATION 
• Jointly with Huawei MindSpore AI + Scientific Computing 

team 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: BACKGROUND 

 Motivations: Electromagnetic simulation (solution of Maxwell 

equations) is widely used in the design of mobile phones and chips. 

 

 

 

 Traditional v.s. machine learning approaches 
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Challenges for machine learning methods:  

a) Efficient data conversion: Domain data needs to be efficiently converted into AI-affinity tensor data.  

b) Memory and computation: A single sample requires several GB video memory, and a single 

convolutional layer computation exceeds 400 GFLOPs.  

c) Generalization: The model needs to handle different structures and materials and produce errors 

under 10% compared with commercial software. 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Meta Auto-Decoder (MAD) for solving parametric PDEs  

 Parameterized PDEs:  

 Pretrain stage: 

 

 

 Fine-tune stage: 

 

 Manifold learning interpretation of MAD 
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• 𝓤 is a function space contains all solutions of 

the parametric PDEs 

• 𝓐 is the space of all parameters 𝜂 

• 𝓩 is the space of latent variables 

• 𝐺 𝓐 = 𝑢𝜂: 𝜂 ∈ 𝓐  is the set of all solutions 

• 𝐺𝜃 𝓩 = 𝑓𝜃 𝑥, 𝑧 : 𝑧 ∈ 𝓩   approximates 𝐺 𝓐  

• For any 𝜂, there exists 𝑧, such that  

𝐺𝜃 𝑧 − 𝐺 𝜂 𝓤 < 𝛿 (Assumption) 

• Fixed 𝜃: Park et al., CVPR 2019 

arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Network architecture of MAD: 𝑓𝜃(𝑥, 𝑧) 

 

 

 

 

 

 

 

 PINN loss (Raissi, Perdikaris, Karniadakis, 2019): 
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arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Demonstration of MAD on a simple example 

 

 

 

 Pre-training and fine-tuning of MAD 
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arXiv:2111.08823 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO I 

 Descriptions on typical scenario I 

 

 

 

 

 

 Results: Implemented on MindSpore and NPU/GPU. The relative error of 

the electromagnetic field is ≈ 𝟏𝟎% with × 𝟐𝟎 speedup over PINN. 
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FDTD 

Auto-decoder 

Error map 



MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: TYPICAL SCENARIO II 

 Task: Learn a direct mapping between mobile device structures and S-

parameters based on historical data gathered by Huawei Device Co., Ltd. 

 

 

 

 

 Methodology: efficient data sampling, grid data compression, and neural 

architecture design to facilitate structural/material generalization. 

 Results: Implemented on MindSpore and NPU/GPU. The relative error of 

the S-parameter is far less than 𝟏𝟎% with × 𝟑𝟎 speedup. 
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MINDSPORE AI ELECTROMAGNETIC 

SIMULATION: MINDSPORE 

 MindSpore architecture (open source)： 

 https://www.mindspore.cn   

 https://gitee.com/mindspore  
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https://www.mindspore.cn/
https://gitee.com/mindspore


CONCLUSIONS AND FUTURE DIRECTIONS 

 Deep learning ≈ optimal control. 

 This grants a framework to combine learning and 

handcraft modeling 

 Start with your favorite dynamics; 

 Identify the component(s) that is hard to handcraft; 

 Replace it by a deep neural network; 

 Pick a loss function and training algorithm; 

 Hope for the best and prepare for the worst.  

 End-to-end mapping: significant speed up for a 

given task, but requires data and incorporate 

domain knowledge. 
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THANKS FOR YOUR 

ATTENTION! 
 

MY WEBPAGE: 

HTTP://BICMR.PKU.EDU.CN/~DONGBIN 

http://bicmr.pku.edu.cn/~dongbin
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