Nonlinear independent component analysis: Identifiability, Self-Supervised Learning, and Likelihood

Aapo Hyvärinen

Department of Computer Science University of Helsinki Finland

Short introduction to deep learning

・ロト ・回ト ・ヨト ・ヨト

Ð,

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning

イロト イヨト イヨト イヨト

臣

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning
- "Disentanglement" methods try to find independent factors

イロト イヨト イヨト イヨト

臣

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning
- "Disentanglement" methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning
- "Disentanglement" methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA not identifiable

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning
- "Disentanglement" methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA not identifiable
- Solution: use temporal structure in time series (two kinds)
 - Temporal dependencies (preferably non-Gaussian)
 - Non-stationarity
 - A more general auxiliary variable framework

Abstract

- Short introduction to deep learning
- Importance of unsupervised learning
- "Disentanglement" methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA not identifiable
- Solution: use temporal structure in time series (two kinds)
 - Temporal dependencies (preferably non-Gaussian)
 - Non-stationarity
 - A more general auxiliary variable framework
- Estimation methods
 - Likelihood: noise-free or with noise term
 - Self-supervised

Neural networks Unsupervised learning

Success of Artificial Intelligence

 Autonomous vehicles, machine translation, game playing, search engines, recommendation machine, etc.

Most modern applications based on deep learning

Image: A math a math

Neural networks Unsupervised learning

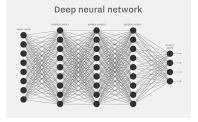
Neural networks

Layers of "neurons" repeating linear transformations and simple nonlinearities f

$$x_i(L+1) = f(\sum_j w_{ij}(L)x_j(L)), \text{ where } L \text{ is layer } (1)$$

with e.g. $f(x) = \max(0, x)$

- Can approximate "any" nonlinear input-output mappings
- Learning by various statistical objectives (e.g. least-squares)



イロト イヨト イヨト イヨト

Neural networks Unsupervised learning

Deep learning

- Deep Learning = learning in neural network with many layers
- With enough data, can learn any input-output relationship: image-category / past-present / friends - political views
- Present boom started by Krizhevsky, Sutskever, Hinton, 2012: Superior recognition success of objects in images

grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
arille	muchroom	grape	snider monkey

grille	mushroom	grape		spider monkey
pickup	jelly fungus	elderberry		titi
beach wagon	gill fungus	ffordshire bullterrier		indri
fire engine	dead-man's-fingers	currant	Т	howler monkey

Neural networks Unsupervised learning

Importance unsupervised learning

Success stories in deep learning need category labels
 Is it a cat or a dog? Liked or not liked?

イロト イヨト イヨト イヨト

Neural networks Unsupervised learning

Importance unsupervised learning

Success stories in deep learning need category labels
Is it a cat or a dog? Liked or not liked?
Problems:

Labels may be difficult obtain
Human annotation may be required
Labels may not be very informative

Neural networks Unsupervised learning

Importance unsupervised learning

Success stories in deep learning need category labels
Is it a cat or a dog? Liked or not liked?
Problems:

Labels may be difficult obtain
Human annotation may be required
Labels may not be very informative

Unsupervised learning :

we only observe a data vector x, no label or target y
E.g. photographs with no labels

Neural networks Unsupervised learning

Importance unsupervised learning

- Success stories in deep learning need category labels
 Is it a cat or a dog? Liked or not liked?
 Problems:

 Labels may be difficult obtain
 Human annotation may be required
 Labels may not be very informative

 Unsupervised learning :

 we only observe a data vector x, no label or target y
 E.g. photographs with no labels
- Very difficult, largely unsolved problem

ICA as principled unsupervised learning Difficulty of nonlinear ICA

< ロ > < 同 > < 三 > < 三 >

ICA as principled unsupervised learning

Linear independent component analysis (ICA)

$$x_i(k) = \sum_{j=1}^n a_{ij} s_j(k)$$
 for all $i = 1...n, k = 1...K$ (2)

x_i(k) is *i*-th observed signal in sample point k (possibly time)
 a_{ij} constant parameters describing "mixing"
 Assuming independent, non-Gaussian latent "sources" s_i

ICA as principled unsupervised learning Difficulty of nonlinear ICA

ヘロト ヘヨト ヘヨト ヘヨト

ICA as principled unsupervised learning

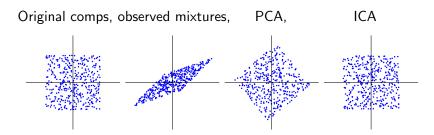
Linear independent component analysis (ICA)

$$x_i(k) = \sum_{j=1}^n a_{ij} s_j(k)$$
 for all $i = 1...n, k = 1...K$ (2)

x_i(k) is *i*-th observed signal in sample point k (possibly time)
 a_{ij} constant parameters describing "mixing"
 Assuming independent, non-Gaussian latent "sources" s_j
 ICA is identifiable, i.e. well-defined: (Darmois-Skitovich ~1950; Comon, 1994)
 Observing only x_i we can recover both a_{ij} and s_j

ICA as principled unsupervised learning Difficulty of nonlinear ICA

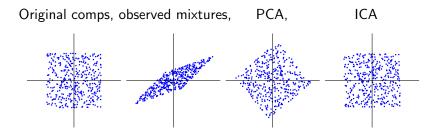
Fundamental difference between ICA and PCA



PCA does not find original coordinates, ICA does!

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Fundamental difference between ICA and PCA



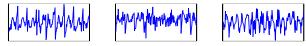
- PCA does not find original coordinates, ICA does!
- PCA, Gaussian factor analysis are not identifiable:
 - Any orthogonal rotation is equivalent: s' = Us has same distribution.

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Identifiability means ICA does blind source separation

Observed signals:

Principal components:

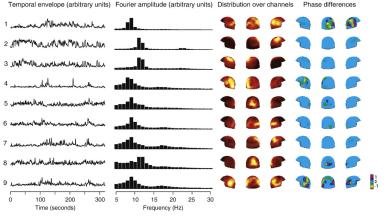


Independent components are original sources:

イロト イヨト イヨト イヨト

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Example of ICA: Brain source separation



(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)

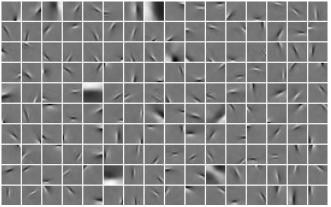
ICA as principled unsupervised learning Difficulty of nonlinear ICA

ヘロト ヘヨト ヘヨト ヘヨト

臣

Example of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)



Features similar to wavelets, Gabor functions, simple cells.

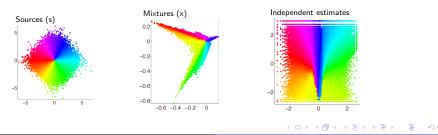
ICA as principled unsupervised learning Difficulty of nonlinear ICA

Nonlinear ICA is an unsolved problem

- Extend ICA to nonlinear case to get general disentanglement?
- Unfortunately, "basic" nonlinear ICA is not identifiable:
- If we define nonlinear ICA model for random variables x_i as

$$x_i = f_i(s_1, \dots, s_n)$$
 for all $i = 1 \dots n$ (3)

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)



ICA as principled unsupervised learning Difficulty of nonlinear ICA

Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- ▶ For any x₁, x₂, can always construct y = g(x₁, x₂) independent of x₁ as

$$g(\xi_1,\xi_2) = P(x_2 < \xi_2 | x_1 = \xi_1)$$
(4)

イロン イヨン イヨン イヨン

3

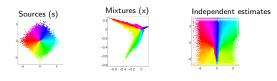
ICA as principled unsupervised learning Difficulty of nonlinear ICA

Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- For any x₁, x₂, can always construct y = g(x₁, x₂) independent of x₁ as

$$g(\xi_1,\xi_2) = P(x_2 < \xi_2 | x_1 = \xi_1)$$
(4)

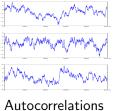
Independence alone too weak for identifiability:
 We could take x₁ as independent component which is absurd



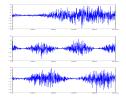
Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Temporal structure helps in nonlinear ICA

- Theory above considered i.i.d. sampled random variables
- ▶ What if we have time series? with specific temporal structure?



(Harmeling et al 2003)

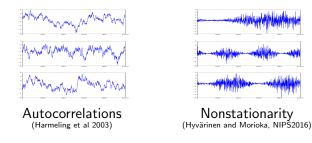


Nonstationarity (Hyvärinen and Morioka, NIPS2016)

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Temporal structure helps in nonlinear ICA

- Theory above considered i.i.d. sampled random variables
- What if we have time series? with specific temporal structure?



Identifiability of nonlinear ICA can be proven (rest of this talk) (Sprekeler et al, 2014; Hyvärinen and Morioka, NIPS2016 & AISTATS2017): Can find original sources!

Image: A math a math

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Source model I: Temporal dependencies

• Assume mixing model $\mathbf{x}_t = \mathbf{f}(\mathbf{s}_t)$ where

- x_t observed *n*-dimensional time series
- s_t latent n-dimensional independent time series
- f invertible (bijective) mixing
- Assume sⁱ_t temporally dependent and non-Gaussian, technically
 - "uniform dependence": pdf of (s_t^i, s_{t-1}^i) not locally factorizable
 - "quasi-Gaussianity" pprox not Gaussian or pointwise transformed
- E.g., non-Gaussian AR model with non-quadratic G:

$$\log p(s_{t}^{i}|s_{t-1}^{i}) = G(s_{t}^{i} - \rho s_{t-1}^{i})$$

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Source model I: Temporal dependencies

• Assume mixing model $\mathbf{x}_t = \mathbf{f}(\mathbf{s}_t)$ where

- x_t observed *n*-dimensional time series
- s_t latent n-dimensional independent time series
- f invertible (bijective) mixing
- Assume sⁱ_t temporally dependent and non-Gaussian, technically
 - "uniform dependence": pdf of (s_t^i, s_{t-1}^i) not locally factorizable
 - "quasi-Gaussianity" pprox not Gaussian or pointwise transformed
- E.g., non-Gaussian AR model with non-quadratic G:

$$\log p(s_{t}^{i}|s_{t-1}^{i}) = G(s_{t}^{i} - \rho s_{t-1}^{i})$$

- We prove identifiability (Hyvärinen and Morioka, AISTATS2017) see also (Oberhauser and Schell, Arxiv 2021)
- ► Why would this work? Impose independence over time lags → more constraints → unique solution

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Source model II: Non-stationarity

- Assume mixing model $\mathbf{x}_t = \mathbf{f}(\mathbf{s}_t)$ as above
- Assume piece-wise stationary source model based on exponential family and time segments τ: log p_τ(sⁱ_t) = q_{i,0}(sⁱ_t) + ∑^V_{ν=1} λ_{i,ν}(τ)q_{i,ν}(sⁱ_t) log Z (assumed 1st-order from now on)
 Assume sufficient non-stationarity: Matrix L with
 - $[\mathbf{L}]_{\tau,i} = \lambda_{i,1}(\tau) \lambda_{i,1}(1) \quad \text{has full column rank } n.$

イロト イヨト イヨト イヨト

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Source model II: Non-stationarity

- Assume mixing model $\mathbf{x}_t = \mathbf{f}(\mathbf{s}_t)$ as above
- Assume piece-wise stationary source model based on exponential family and time segments *τ*: log p_τ(sⁱ_t) = q_{i,0}(sⁱ_t) + ∑^V_{ν=1} λ_{i,ν}(τ)q_{i,ν}(sⁱ_t) log Z (assumed 1st-order from now on)
- Assume sufficient non-stationarity: Matrix **L** with $[\mathbf{L}]_{\tau,i} = \lambda_{i,1}(\tau) \lambda_{i,1}(1)$ has full column rank *n*.
- We prove (partial) identifiability : identifiable up to pointwise
 + linear transforms (Hyvärinen and Morioka NIPS2016)

$$[q_1(\hat{s}_t^1),\ldots,q_n(\hat{s}_t^n)]^T = \mathbf{A}[q_1(s_t^1),\ldots,q_n(s_t^n)]^T \qquad (5)$$

for some unknown matrix **A** and *pointwise* nonlinearities q_i

► Why would this work? Impose independence at every segment → more constraints → unique solution

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noise-free likelihood I: Formulation

Noise-free likelihood for invertible mixing

$$\mathbf{x}_{\mathbf{t}} = \mathbf{f}(\mathbf{s}_{\mathbf{t}}),\tag{6}$$

where again

- **x**_t observed *n*-dimensional time series
- s_t latent n-dimensional "independent components"
- f invertible (bijective) mixing
- Log-likelihood log L(x₁,..., x_T) easy to formulate with g = f⁻¹ and Jg its Jacobian:

$$\log L = \sum_{i} \log p_i(g_i(\mathbf{x}_1), \dots, g_i(\mathbf{x}_T)) + \sum_{t} \log |\det \mathbf{Jg}(\mathbf{x}_t)|$$

Preceding slides give possible p_i: Just your time series model

Computationally, can be very difficult: Jacobian of neural net?

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noise-free likelihood I: Optimization

- Modelling $\mathbf{f}^{-1} = \mathbf{g}$ with a neural network $\mathbf{g}_{\boldsymbol{\theta}}$, how to optimize
 - $\log |\det \mathbf{Jg}_{\theta}(\mathbf{x})| \tag{7}$

イロト イポト イヨト イヨト

for a single observation ${\boldsymbol x}$?

The difficulty comes from need for inversion:

$$\nabla_{\mathbf{W}} \log |\det \mathbf{W}| = (\mathbf{W}^{-1})^{T}$$
(8)

as well as combining this with backpropagation (chain rule).

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noise-free likelihood I: Optimization

- ▶ Modelling $\mathbf{f}^{-1} = \mathbf{g}$ with a neural network \mathbf{g}_{θ} , how to optimize
 - $\log |\det \mathbf{Jg}_{\theta}(\mathbf{x})| \tag{7}$

for a single observation ${\bf x}$?

The difficulty comes from need for inversion:

$$\nabla_{\mathbf{W}} \log |\det \mathbf{W}| = (\mathbf{W}^{-1})^{T}$$
(8)

as well as combining this with backpropagation (chain rule).

- Solution: relative gradient (Gresele et al, NeurIPS2020)
- Consider *multiplicative* perturbation with any objective *h*:

$$h((\mathbf{I} + \boldsymbol{\epsilon})\mathbf{W}) - h(\mathbf{W}) = \langle \nabla h(\mathbf{W})\mathbf{W}^{\top}, \boldsymbol{\epsilon} \rangle + o(\mathbf{W})$$
 (9)

► Steepest descent method: $\mathbf{W} \leftarrow \mathbf{W} + \mu \nabla h(\mathbf{W}) \mathbf{W}^\top \mathbf{W}$

▶ Inverses disappear: $(\mathbf{W}^{-1})^T \mathbf{W}^T \mathbf{W} = \mathbf{W} \rightarrow \text{Easy to compute!}$

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noisy Likelihood I: Background

Deep Latent Variable Models: Widely-used, general framework with observed data vector x and latent s:

$$p(\mathbf{x},\mathbf{s}) = p_{\boldsymbol{ heta}}(\mathbf{x}|\mathbf{s})p(\mathbf{s}), \ \ p(\mathbf{x}) = \int p_{\boldsymbol{ heta}}(\mathbf{x},\mathbf{s})d\mathbf{s}$$

where heta is a vector of parameters, e.g. in a neural network

Image: A math and A

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noisy Likelihood I: Background

Deep Latent Variable Models: Widely-used, general framework with observed data vector x and latent s:

$$p(\mathbf{x},\mathbf{s}) = p_{\theta}(\mathbf{x}|\mathbf{s})p(\mathbf{s}), \ \ p(\mathbf{x}) = \int p_{\theta}(\mathbf{x},\mathbf{s})d\mathbf{s}$$

where θ is a vector of parameters, e.g. in a neural network In variational autoencoders (VAE) :

- Define prior p(s) so that s white Gaussian (thus s_i all independent)
- Define posterior p_θ(x|s) as x = f_θ(s) + n, with n Gaussian noise

Image: A match the second s

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noisy Likelihood I: Background

Deep Latent Variable Models: Widely-used, general framework with observed data vector x and latent s:

$$p(\mathbf{x},\mathbf{s}) = p_{\boldsymbol{ heta}}(\mathbf{x}|\mathbf{s})p(\mathbf{s}), \ \ p(\mathbf{x}) = \int p_{\boldsymbol{ heta}}(\mathbf{x},\mathbf{s})d\mathbf{s}$$

where θ is a vector of parameters, e.g. in a neural network In variational autoencoders (VAE) :

- Define prior p(s) so that s white Gaussian (thus s_i all independent)
- Define posterior p_θ(x|s) as x = f_θ(s) + n, with n Gaussian noise
- VAE implements "black-box" variational inference: approximate maximum likelihood

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Noisy likelihood II: Identifiable Variational Autoencoder

But VAE gives noisy version of Nonlinear ICA!

$$\mathbf{x} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{s}) + \mathbf{n} \tag{10}$$

with Gaussian, independent s_i

- ▶ Not identifiable: x observed i.i.d. and even Gaussian
- Intuitively, original VAE is more like PCA (instead of ICA)

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

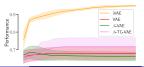
Noisy likelihood II: Identifiable Variational Autoencoder

But VAE gives noisy version of Nonlinear ICA!

$$\mathbf{x} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{s}) + \mathbf{n} \tag{10}$$

with Gaussian, independent s_i

- ▶ Not identifiable: x observed i.i.d. and even Gaussian
- Intuitively, original VAE is more like PCA (instead of ICA)
- We propose identifiable version: iVAE (Khemakhem et al, AISTATS2020)
- We generalize theory of preceding slides
 - Assume there is some "auxiliary" observed variable u
 - **u** can be audio for video, time index, history, etc.
 - Assume: s_i conditionally independent given u
 - Temporal structure as special case



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Heuristic approach: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, "output" y

Image: A match the second s

∢ ≣ ▶

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Heuristic approach: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, "output" y
- Unsupervised learning: we have
 - ▶ only "input" x

Image: A matrix and a matrix

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Heuristic approach: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, "output" y
- Unsupervised learning: we have
 - only "input" x
- Self-supervised learning: we have
 - only "input" x to begin with
 - but we invent y somehow, e.g. by creating corrupted data, and use supervised algorithms
- E.g. Noise-contrastive estimation: Train a neural network to discriminate between x and artificially generated noise (Gutmann and Hyvärinen, 2010)

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

2

Heuristic approach: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, "output" y
- Unsupervised learning: we have
 - only "input" x
- Self-supervised learning: we have
 - only "input" x to begin with
 - but we invent y somehow, e.g. by creating corrupted data, and use supervised algorithms
- E.g. Noise-contrastive estimation: Train a neural network to discriminate between x and artificially generated noise (Gutmann and Hyvärinen, 2010)
- Our original approach to nonlinear ICA
- Easy to implement, since may use well-known algorithms

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Time-contrastive learning: (Hyvärinen and Morioka 2016)

• Observe *n*-dim time series $\mathbf{x}(t)$

1		ranaforn der bergelse Lennerslander bergelse Feldelse forster bergelse
n		, the property and the second
		Time (t)

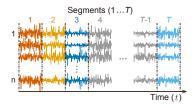
イロト イヨト イヨト イヨト

臣

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Time-contrastive learning: (Hyvärinen and Morioka 2016)

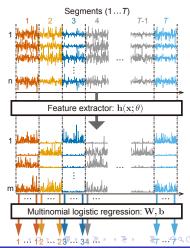
- Observe *n*-dim time series $\mathbf{x}(t)$
- Divide x(t) into T segments (e.g. bins with equal sizes)



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Time-contrastive learning: (Hyvärinen and Morioka 2016)

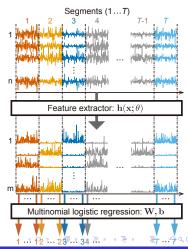
- Observe *n*-dim time series x(t)
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is *T*, labels given by index of segment
 - Multinomial logistic regression



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe *n*-dim time series x(t)
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is T, labels given by index of segment
 - Multinomial logistic regression
- In hidden layer h, NN should learn to represent nonstationarity
 - (= differences between segments)
- Nonlinear ICA for nonstationary data!



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

How about stationary time series?

1 MMMMMMM Manaday-galan Maraday-galan i: n MMMMMMMM

イロト イヨト イヨト イヨト

臣

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

- How about stationary time series?
- Take short time windows as new data

$$\mathbf{y}(t) = (\mathbf{x}(t), \mathbf{x}(t-1))$$

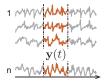


Image: A matrix and a matrix

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

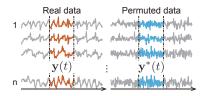
- How about stationary time series?
- Take short time windows as new data

$$\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$$

Create randomly time-permuted data

$$\mathbf{y}^*(t) = \big(\mathbf{x}(t), \mathbf{x}(t^*)\big)$$

with t^* a random time point.



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

- How about stationary time series?
- Take short time windows as new data

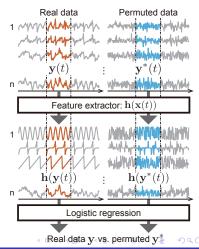
 $\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$

Create randomly time-permuted data

 $\mathbf{y}^*(t) = \big(\mathbf{x}(t), \mathbf{x}(t^*)\big)$

with t^* a random time point.

- Train NN to discriminate y from y*
- Performs Nonlinear ICA for temporally dependent components!



Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Connection between self-supervised learning and likelihood

- Above, we solved classification problem by logistic regression
- Then, regression function will converge towards

$$r(\mathbf{x}) = \log p_1(\mathbf{x}) - \log p_2(\mathbf{x}) \tag{11}$$

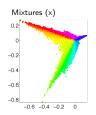
where p_1, p_2 are the pdf's in the two classes

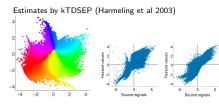
- E.g. Noise-contrastive estimation: Set p_1 observed data, p_2 Gaussian noise $\rightarrow r$ will estimate data log-pdf up to a known additive function (Gutmann and Hyvärinen, 2010)
- Not that different from likelihood!?
- Finite-sample properties certainly different

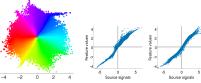
Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Illustration of demixing capability by PCL

Non-Gaussian AR model for sources $\log p(s(t)|s(t-1)) = -|s(t) - \rho s(t-1)|$







A. Hyvärinen

・ロト ・回ト ・ヨト

< ∃⇒

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Recent extensions

 Above, one model for nonstationary data (TCL), one for temporal dependencies (PCL): How to combine?
 → Nonstationary innovations (Morioka et al, AISTATS2021)

Image: A match the second s

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Recent extensions

- Above, one model for nonstationary data (TCL), one for temporal dependencies (PCL): How to combine?
 → Nonstationary innovations (Morioka et al, AISTATS2021)
- Above, predefined (manual) segmentation in TCL: Can segmentation be learned?
 - \rightarrow Combine TCL with HMM (Hälvä & Hyvärinen, UAI2020)

Image: A match the second s

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Recent extensions

- Above, one model for nonstationary data (TCL), one for temporal dependencies (PCL): How to combine?
 → Nonstationary innovations (Morioka et al, AISTATS2021)
- Above, predefined (manual) segmentation in TCL: Can segmentation be learned?
 Combine TCL with HMM (Uiter & United States 1002)
 - \rightarrow Combine TCL with HMM (Hälvä & Hyvärinen, UAI2020)
- ► Independence can be seen as a restriction (at least by some) → Generalize to dependent components using energy-based modelling (Khemakhem et al, NeurIPS2020)

イロト イヨト イヨト イヨト

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Recent extensions

- Above, one model for nonstationary data (TCL), one for temporal dependencies (PCL): How to combine?
 → Nonstationary innovations (Morioka et al, AISTATS2021)
- Above, predefined (manual) segmentation in TCL: Can segmentation be learned?
 - \rightarrow Combine TCL with HMM (Hälvä & Hyvärinen, UAI2020)
- ► Independence can be seen as a restriction (at least by some) → Generalize to dependent components using energy-based modelling (Khemakhem et al, NeurIPS2020)
- (Mentioned earlier: Instead of time structure, some other conditioning variable)

イロト イヨト イヨト イヨト

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

Typical deep learning needs class labels, or some targets

イロト イヨト イヨト イヨト

臣

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- ▶ If no class labels: **un**supervised learning

・ロト ・回ト ・ヨト ・ヨト

臣

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- If no class labels: unsupervised learning
- Independent component analysis is a principled approach
 - can be made nonlinear

イロト イヨト イヨト イヨト

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- If no class labels: unsupervised learning
- Independent component analysis is a principled approach
 - can be made nonlinear
- Identifiable : Can recover components that actually created the data (unlike PCA, VAE etc)

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- If no class labels: unsupervised learning
- Independent component analysis is a principled approach
 - can be made nonlinear
- Identifiable : Can recover components that actually created the data (unlike PCA, VAE etc)
- Special assumptions needed for identifiability, one of:
 - Nonstationarity ("time-contrastive learning")
 - Temporal dependencies ("permutation-contrastive learning")
 - Existence of auxiliary (conditioning) variable (e.g. "iVAE")

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- If no class labels: unsupervised learning
- Independent component analysis is a principled approach
 - can be made nonlinear
- Identifiable : Can recover components that actually created the data (unlike PCA, VAE etc)
- Special assumptions needed for identifiability, one of:
 - Nonstationarity ("time-contrastive learning")
 - Temporal dependencies ("permutation-contrastive learning")
 - Existence of auxiliary (conditioning) variable (e.g. "iVAE")
- Maximum likelihood estimation possible: noisy or noise-free
- Self-supervised methods are easy to implement

イロト イヨト イヨト イヨト

Defining temporal structure Noise-free likelihood Noisy likelihood Self-supervised learning

Conclusion

- Typical deep learning needs class labels, or some targets
- If no class labels: unsupervised learning
- Independent component analysis is a principled approach
 - can be made nonlinear
- Identifiable : Can recover components that actually created the data (unlike PCA, VAE etc)
- Special assumptions needed for identifiability, one of:
 - Nonstationarity ("time-contrastive learning")
 - Temporal dependencies ("permutation-contrastive learning")
 - Existence of auxiliary (conditioning) variable (e.g. "iVAE")
- Maximum likelihood estimation possible: noisy or noise-free
- Self-supervised methods are easy to implement
- Principled framework for "disentanglement"