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Abstract

I Short introduction to deep learning

I Importance of unsupervised learning

I “Disentanglement” methods try to find independent factors

I In linear case, independent component analysis (ICA)
successful, can we extend to a nonlinear method?

I Problem: Nonlinear ICA not identifiable
I Solution: use temporal structure in time series (two kinds)

I Temporal dependencies (preferably non-Gaussian)
I Non-stationarity
I A more general auxiliary variable framework

I Estimation methods
I Likelihood: noise-free or with noise term
I Self-supervised
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Neural networks
Unsupervised learning

Success of Artificial Intelligence

I Autonomous vehicles, machine translation, game playing,
search engines, recommendation machine, etc.

I Most modern applications based on deep learning
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Neural networks

I Layers of “neurons” repeating linear transformations and
simple nonlinearities f

xi (L + 1) = f (
∑
j

wij(L)xj(L)), where L is layer (1)

with e.g. f (x) = max(0, x)

I Can approximate “any” non-
linear input-output mappings

I Learning by various statistical
objectives (e.g. least-squares)
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Deep learning

I Deep Learning = learning in neural network with many layers

I With enough data, can learn any input-output relationship:
image-category / past-present / friends - political views

I Present boom started by Krizhevsky, Sutskever, Hinton, 2012:
Superior recognition success of objects in images
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Importance unsupervised learning

I Success stories in deep learning need category labels
I Is it a cat or a dog? Liked or not liked?

I Problems:
I Labels may be difficult obtain
I Human annotation may be required
I Labels may not be very informative

I Unsupervised learning :
I we only observe a data vector x, no label or target y
I E.g. photographs with no labels

I Very difficult, largely unsolved problem
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

ICA as principled unsupervised learning

I Linear independent component analysis (ICA)

xi (k) =
n∑

j=1

aijsj(k) for all i = 1 . . . n, k = 1 . . .K (2)

I xi (k) is i-th observed signal in sample point k (possibly time)
I aij constant parameters describing “mixing”
I Assuming independent, non-Gaussian latent “sources” sj

I ICA is identifiable, i.e. well-defined: (Darmois-Skitovich ∼1950; Comon, 1994)

I Observing only xi we can recover both aij and sj
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Fundamental difference between ICA and PCA

Original comps, observed mixtures, PCA, ICA

I PCA does not find original coordinates, ICA does!

I PCA, Gaussian factor analysis are not identifiable:

I Any orthogonal rotation is equiva-
lent: s′ = Us has same distribution.
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Nonlinear ICA

ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Identifiability means ICA does blind source separation

Observed signals:

Principal components:

Independent components are original sources:
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Example of ICA: Brain source separation

(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Example of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)

Features similar to wavelets, Gabor functions, simple cells.
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Nonlinear ICA is an unsolved problem

I Extend ICA to nonlinear case to get general disentanglement?
I Unfortunately, “basic” nonlinear ICA is not identifiable:
I If we define nonlinear ICA model for random variables xi as

xi = fi (s1, . . . , sn) for all i = 1 . . . n (3)

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)

Sources (s)
Mixtures (x) Independent estimates
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ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Darmois construction

I Darmois (1952) showed impossibility of nonlinear ICA:

I For any x1, x2, can always construct y = g(x1, x2)
independent of x1 as

g(ξ1, ξ2) = P(x2 < ξ2|x1 = ξ1) (4)

I Independence alone too weak for identifiability:
We could take x1 as independent component which is absurd

Sources (s) Mixtures (x) Independent estimates
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Defining temporal structure
Noise-free likelihood
Noisy likelihood
Self-supervised learning

Temporal structure helps in nonlinear ICA

I Theory above considered i.i.d. sampled random variables

I What if we have time series? with specific temporal structure?

Autocorrelations
(Harmeling et al 2003)

Nonstationarity
(Hyvärinen and Morioka, NIPS2016)

I Identifiability of nonlinear ICA can be proven (rest of this talk)
(Sprekeler et al, 2014; Hyvärinen and Morioka, NIPS2016 & AISTATS2017):
Can find original sources!
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Source model I: Temporal dependencies

I Assume mixing model xt = f(st) where
I xt observed n-dimensional time series
I st latent n-dimensional independent time series
I f invertible (bijective) mixing

I Assume s it temporally dependent and non-Gaussian,
technically
I “uniform dependence”: pdf of (s it , s

i
t−1) not locally factorizable

I “quasi-Gaussianity” ≈ not Gaussian or pointwise transformed
I E.g., non-Gaussian AR model with non-quadratic G :

log p(s it |s it−1) = G (s it − ρs it−1)

I We prove identifiability (Hyvärinen and Morioka, AISTATS2017)

see also (Oberhauser and Schell, Arxiv 2021)
I Why would this work? Impose independence over time lags →

more constraints → unique solution
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Source model II: Non-stationarity

I Assume mixing model xt = f(st) as above
I Assume piece-wise stationary source model based on

exponential family and time segments τ :
log pτ (s it) = qi ,0(s it) +

∑V
v=1 λi ,v (τ)qi ,v (s it)− logZ

(assumed 1st-order from now on)
I Assume sufficient non-stationarity: Matrix L with

[L]τ,i = λi ,1(τ)− λi ,1(1) has full column rank n.

I We prove (partial) identifiability : identifiable up to pointwise
+ linear transforms (Hyvärinen and Morioka NIPS2016)

[q1(ŝ1t ), . . . , qn(ŝnt )]T = A[q1(s1t ), . . . , qn(snt )]T (5)

for some unknown matrix A and pointwise nonlinearities qi
I Why would this work? Impose independence at every segment
→ more constraints → unique solution

A. Hyvärinen Nonlinear ICA



Deep Learning
Independent component analysis

Nonlinear ICA

Defining temporal structure
Noise-free likelihood
Noisy likelihood
Self-supervised learning

Source model II: Non-stationarity

I Assume mixing model xt = f(st) as above
I Assume piece-wise stationary source model based on

exponential family and time segments τ :
log pτ (s it) = qi ,0(s it) +

∑V
v=1 λi ,v (τ)qi ,v (s it)− logZ

(assumed 1st-order from now on)
I Assume sufficient non-stationarity: Matrix L with

[L]τ,i = λi ,1(τ)− λi ,1(1) has full column rank n.
I We prove (partial) identifiability : identifiable up to pointwise

+ linear transforms (Hyvärinen and Morioka NIPS2016)
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Noise-free likelihood I: Formulation

I Noise-free likelihood for invertible mixing

xt = f(st), (6)

where again
I xt observed n-dimensional time series
I st latent n-dimensional “independent components“
I f invertible (bijective) mixing

I Log-likelihood log L(x1, . . . , xT) easy to formulate with
g = f−1 and Jg its Jacobian:

log L =
∑
i

log pi (gi (x1), . . . , gi (xT )) +
∑
t

log | det Jg(xt)|

I Preceding slides give possible pi : Just your time series model
I Computationally, can be very difficult: Jacobian of neural net?
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Noise-free likelihood I: Optimization

I Modelling f−1 = g with a neural network gθ, how to optimize

log | det Jgθ(x)| (7)

for a single observation x ?
I The difficulty comes from need for inversion:

∇W log | det W| = (W−1)T (8)

as well as combining this with backpropagation (chain rule).

I Solution: relative gradient (Gresele et al, NeurIPS2020)

I Consider multiplicative perturbation with any objective h:

h((I + ε)W)− h(W) = 〈∇h(W)W>, ε〉+ o(W) (9)

I Steepest descent method: W←W + µ∇h(W)W>W
I Inverses disappear: (W−1)TW>W = W → Easy to compute!
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Noisy Likelihood I: Background

I Deep Latent Variable Models: Widely-used, general
framework with observed data vector x and latent s:

p(x, s) = pθ(x|s)p(s), p(x) =

∫
pθ(x, s)ds

where θ is a vector of parameters, e.g. in a neural network

I In variational autoencoders (VAE) :

I Define prior p(s) so that s white Gaussian (thus si all
independent)

I Define posterior pθ(x|s) as x = fθ(s) + n,
with n Gaussian noise

I VAE implements “black-box” variational inference:
approximate maximum likelihood
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Noisy likelihood II: Identifiable Variational Autoencoder

I But VAE gives noisy version of Nonlinear ICA!

x = fθ(s) + n (10)

with Gaussian, independent si
I Not identifiable: x observed i.i.d. and even Gaussian
I Intuitively, original VAE is more like PCA (instead of ICA)

I We propose identifiable version: iVAE
(Khemakhem et al, AISTATS2020)

I We generalize theory of preceding slides
I Assume there is some “auxiliary” observed variable u
I u can be audio for video, time index, history, etc.

I Assume: si conditionally
independent given u

I Temporal structure as special case
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Noisy likelihood II: Identifiable Variational Autoencoder

I But VAE gives noisy version of Nonlinear ICA!
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I We propose identifiable version: iVAE

(Khemakhem et al, AISTATS2020)
I We generalize theory of preceding slides

I Assume there is some “auxiliary” observed variable u
I u can be audio for video, time index, history, etc.
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independent given u

I Temporal structure as special case
A. Hyvärinen Nonlinear ICA



Deep Learning
Independent component analysis

Nonlinear ICA

Defining temporal structure
Noise-free likelihood
Noisy likelihood
Self-supervised learning

Heuristic approach: “Self-supervised” learning

I Supervised learning: we have
I “input” x, “output” y

I Unsupervised learning: we have
I only “input” x

I Self-supervised learning: we have
I only “input” x to begin with
I but we invent y somehow, e.g. by creating corrupted data, and

use supervised algorithms

I E.g. Noise-contrastive estimation: Train a neural network to
discriminate between x and artificially generated noise
(Gutmann and Hyvärinen, 2010)

I Our original approach to nonlinear ICA

I Easy to implement, since may use well-known algorithms
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Time-contrastive learning: (Hyvärinen and Morioka 2016)

I Observe n-dim time series x(t)
1

Time (  )

n
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Time-contrastive learning: (Hyvärinen and Morioka 2016)

I Observe n-dim time series x(t)

I Divide x(t) into T segments
(e.g. bins with equal sizes)

1

Time (  )

n

Segments (1    T)
1 2 3 T 4 T-1 
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Time-contrastive learning: (Hyvärinen and Morioka 2016)

I Observe n-dim time series x(t)

I Divide x(t) into T segments
(e.g. bins with equal sizes)

I Train MLP to tell which segment
a single data point comes from
I Number of classes is T ,

labels given by index of segment
I Multinomial logistic regression

1

n

Segments (1    T)
1 2 3 T 4 T-1 

1

m

Feature extractor:

1 1 2 2 3 T T3 4

Multinomial logistic regression:
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Time-contrastive learning: (Hyvärinen and Morioka 2016)

I Observe n-dim time series x(t)

I Divide x(t) into T segments
(e.g. bins with equal sizes)

I Train MLP to tell which segment
a single data point comes from
I Number of classes is T ,

labels given by index of segment
I Multinomial logistic regression

I In hidden layer h, NN should learn to
represent nonstationarity
(= differences between segments)

I Nonlinear ICA for nonstationary data!
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Segments (1    T)
1 2 3 T 4 T-1 
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m

Feature extractor:

1 1 2 2 3 T T3 4

Multinomial logistic regression:
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Permutation-contrastive learning (Hyvärinen and Morioka 2017)

I How about stationary time series?

1

n
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Permutation-contrastive learning (Hyvärinen and Morioka 2017)

I How about stationary time series?

I Take short time windows as new data

y(t) =
(
x(t), x(t − 1)

) 1

n
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Permutation-contrastive learning (Hyvärinen and Morioka 2017)

I How about stationary time series?

I Take short time windows as new data

y(t) =
(
x(t), x(t − 1)

)
I Create randomly time-permuted data

y∗(t) =
(
x(t), x(t∗)

)
with t∗ a random time point.

1

n

Permuted dataReal data
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Permutation-contrastive learning (Hyvärinen and Morioka 2017)

I How about stationary time series?

I Take short time windows as new data

y(t) =
(
x(t), x(t − 1)

)
I Create randomly time-permuted data

y∗(t) =
(
x(t), x(t∗)

)
with t∗ a random time point.

I Train NN to discriminate y from y∗

I Performs Nonlinear ICA for
temporally dependent components!

1

n

1

Logistic regression

Permuted dataReal data

Feature extractor:

n

Real data     vs. permuted
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Connection between self-supervised learning and likelihood

I Above, we solved classification problem by logistic regression

I Then, regression function will converge towards

r(x) = log p1(x)− log p2(x) (11)

where p1, p2 are the pdf’s in the two classes

I E.g. Noise-contrastive estimation: Set p1 observed data, p2
Gaussian noise → r will estimate data log-pdf up to a known
additive function (Gutmann and Hyvärinen, 2010)

I Not that different from likelihood!?

I Finite-sample properties certainly different
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Illustration of demixing capability by PCL

I Non-Gaussian AR model for sources
log p(s(t)|s(t − 1)) = −|s(t)− ρs(t − 1)|

Sources (s)

Mixtures (x)

Estimates by kTDSEP (Harmeling et al 2003)

Estimates by our PCL
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Recent extensions

I Above, one model for nonstationary data (TCL), one for
temporal dependencies (PCL): How to combine?
→ Nonstationary innovations (Morioka et al, AISTATS2021)

I Above, predefined (manual) segmentation in TCL:
Can segmentation be learned?
→ Combine TCL with HMM (Hälvä & Hyvärinen, UAI2020)

I Independence can be seen as a restriction (at least by some)
→ Generalize to dependent components using
energy-based modelling (Khemakhem et al, NeurIPS2020)

I (Mentioned earlier: Instead of time structure, some other
conditioning variable)
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I Independence can be seen as a restriction (at least by some)
→ Generalize to dependent components using
energy-based modelling (Khemakhem et al, NeurIPS2020)

I (Mentioned earlier: Instead of time structure, some other
conditioning variable)

A. Hyvärinen Nonlinear ICA



Deep Learning
Independent component analysis

Nonlinear ICA

Defining temporal structure
Noise-free likelihood
Noisy likelihood
Self-supervised learning

Recent extensions

I Above, one model for nonstationary data (TCL), one for
temporal dependencies (PCL): How to combine?
→ Nonstationary innovations (Morioka et al, AISTATS2021)

I Above, predefined (manual) segmentation in TCL:
Can segmentation be learned?
→ Combine TCL with HMM (Hälvä & Hyvärinen, UAI2020)
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Conclusion

I Typical deep learning needs class labels, or some targets

I If no class labels: unsupervised learning
I Independent component analysis is a principled approach

I can be made nonlinear

I Identifiable : Can recover components that actually created
the data (unlike PCA, VAE etc)

I Special assumptions needed for identifiability, one of:
I Nonstationarity (“time-contrastive learning”)
I Temporal dependencies (“permutation-contrastive learning”)
I Existence of auxiliary (conditioning) variable (e.g. “iVAE”)

I Maximum likelihood estimation possible: noisy or noise-free

I Self-supervised methods are easy to implement

I Principled framework for “disentanglement”
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