Optimal Thinning of MCMC Output

Chris. J. Oates
Newcastle University
Alan Turing Institute

February 2022 @ DataSig Seminar Series

Lloyd's Register
Foundation

Computation for the Bayesian Framework

The goal is to obtain an approximation to the posterior in a Bayesian context:

$$
P: \pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}
$$

where $\theta \in \Theta$ are the unknown parameters of the model, $\pi(\theta)$ is an appropriate prior density and y denotes the dataset.

This raises technical challenges as the normalisation constant

is an intractable d-dimensional integral.
Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only evaluation of the un-normalised form

$$
p(\theta):=\pi(y \mid \theta) \pi(\theta)
$$

but it is not a silver bullet.

Computation for the Bayesian Framework

The goal is to obtain an approximation to the posterior in a Bayesian context:

$$
P: \pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}
$$

where $\theta \in \Theta$ are the unknown parameters of the model, $\pi(\theta)$ is an appropriate prior density and y denotes the dataset.

This raises technical challenges as the normalisation constant

$$
\pi(y)=\int_{\Theta} \pi(y \mid \theta) \pi(\theta) \mathrm{d} \theta
$$

is an intractable d-dimensional integral.
Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only evaluation of the un-normalised form

$$
p(\theta):=\pi(y \mid \theta) \pi(\theta),
$$

but it is not a silver bullet.

Computation for the Bayesian Framework

The goal is to obtain an approximation to the posterior in a Bayesian context:

$$
P: \pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}
$$

where $\theta \in \Theta$ are the unknown parameters of the model, $\pi(\theta)$ is an appropriate prior density and y denotes the dataset.

This raises technical challenges as the normalisation constant

$$
\pi(y)=\int_{\Theta} \pi(y \mid \theta) \pi(\theta) \mathrm{d} \theta
$$

is an intractable d-dimensional integral.
Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only evaluation of the un-normalised form

$$
p(\theta):=\pi(y \mid \theta) \pi(\theta)
$$

but it is not a silver bullet.

An Ideal Post-Processing Method

In an ideal world we would be able to post-process the MCMC output and keep only those states that are representative of the posterior P :

Representative Subset $\left(\theta_{i}\right)_{i \in S}$

Desiderata:

- Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number of points proportional to the probability mass in a region; etc.)
- Compressed representation of the posterior, to reduce any downstream computational load.

An Ideal Post-Processing Method

In an ideal world we would be able to post-process the MCMC output and keep only those states that are representative of the posterior P :

Desiderata:

- Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number of points proportional to the probability mass in a region; etc.)
\rightarrow Compressed representation of the posterior, to reduce any downstream computational load.

An Ideal Post-Processing Method

In an ideal world we would be able to post-process the MCMC output and keep only those states that are representative of the posterior P :

Desiderata:

- Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number of points proportional to the probability mass in a region; etc.)
- Compressed representation of the posterior, to reduce any downstream computational load.

Optimal Thinning of MCMC Output

"Pick a representative subset from the MCMC output"

$$
\text { Idea: } \quad \underset{\substack{S \subset\{1, \ldots, n\} \\|S|=m}}{\arg \min } \underbrace{\operatorname{diff}}_{(*)}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right)
$$

Remarks:

- "Nice idea, but we don't have access to P."
- "Combinatorial optimisation is a hard problem.

Our strategy is to use Stein's Method to manufacture a function $(*)$ that can be computed without the normalisation constant $\pi(y)$.

Optimal Thinning of MCMC Output

"Pick a representative subset from the MCMC output"

$$
\text { Idea: } \quad \underset{\substack{S \subset\{1, \ldots, n\} \\|S|=m}}{\arg \min } \underbrace{\text { diff }}_{(*)}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right)
$$

Remarks:

- "Nice idea, but we don't have access to P."
> "Combinatorial optimisation is a hard problem.

Our strategy is to use Stein's Method to manufacture a function $(*)$ that can be computed without the normalisation constant $\pi(y)$.

Optimal Thinning of MCMC Output

"Pick a representative subset from the MCMC output"

$$
\text { Idea: } \quad \underset{\substack{S \subset\{1, \ldots, n\} \\|S|=m}}{\arg \min } \underbrace{\operatorname{diff}}_{(*)}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right)
$$

Remarks:

- "Nice idea, but we don't have access to P."
- "Combinatorial optimisation is a hard problem."

Our strategy is to use Stein's Method to manufacture a function $(*)$ that can be computed without the normalisation constant $\pi(y)$.

Optimal Thinning of MCMC Output

"Pick a representative subset from the MCMC output"

$$
\text { Idea: } \quad \underset{\substack{S \subset\{1, \ldots, n\} \\|S|=m}}{\arg \min } \underbrace{\operatorname{diff}}_{(*)}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right)
$$

Remarks:

- "Nice idea, but we don't have access to P."
- "Combinatorial optimisation is a hard problem."

Our strategy is to use Stein's Method to manufacture a function (*) that can be computed without the normalisation constant $\pi(y)$.

Outline

Kernel Stein Discrepancy

Stein Thinning of MCMC Output

Stein's Method in Computational Statistics

Kernel Stein Discrepancy

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right):=\sup _{\|f\|_{\mathcal{K}} \leq 1} \frac{1}{m} \sum_{i \in S} f\left(\theta_{i}\right)-\mathbb{E}_{\vartheta \sim P}[f(\vartheta)]
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right):=\sup _{\|f\|_{\mathcal{K}} \leq 1}\left|\frac{1}{m} \sum_{i \in S} f\left(\theta_{i}\right)-\mathbb{E}_{\vartheta \sim P}[f(\vartheta)]\right|
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.

Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)$)
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right):=\sup _{\|f\|_{\mathcal{K}} \leq 1}\left|\frac{1}{m} \sum_{i \in S}\left\langle f, k\left(\theta_{i}, \cdot\right)\right\rangle_{\mathcal{K}}-\mathbb{E}_{\vartheta \sim P}\left[\langle f, k(\vartheta, \cdot)\rangle_{\mathcal{K}}\right]\right|
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.

Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right):=\sup _{\|f\|_{\mathcal{K}} \leq 1}\left|\left\langle f, \frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\mathbb{E}_{\vartheta \sim P}[k(\vartheta, \cdot)]\right\rangle_{\mathcal{K}}\right|
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right):=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)$)
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

$$
D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)^{2}=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}}^{2}
$$

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} d P$.
Problem: We need to choose k carefully, so that k_{P} and $k_{P, P}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)$)
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

$$
D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)^{2}=\left\langle\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta), \frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\rangle_{\mathcal{K}}
$$

where $k_{p}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{p} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{P} and $k_{P, P}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.
(Intuition: $\left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)$
Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

$$
\begin{gathered}
D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)^{2}=\frac{1}{m^{2}} \sum_{i, j \in S}\left\langle k\left(\theta_{i}, \cdot\right), k\left(\theta_{j}, \cdot\right)\right\rangle_{\mathcal{K}}-\frac{2}{m} \sum_{i \in S} \int\left\langle k(\theta, \cdot), k\left(\theta_{i}, \cdot\right)\right\rangle_{\mathcal{K}} \mathrm{d} P(\theta) \\
-\iint\left\langle k(\theta, \cdot), k\left(\theta^{\prime}, \cdot\right)\right\rangle_{\mathcal{K}} \mathrm{d} P(\theta) \mathrm{d} P\left(\theta^{\prime}\right)
\end{gathered}
$$

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} d P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{P, P}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.

$$
\text { (Intuition: } \left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)
$$

Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

$$
D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)^{2}=\frac{1}{m^{2}} \sum_{i, j \in S} k\left(\theta_{i}, \theta_{j}\right)-\frac{2}{m} \sum_{i \in S} k_{P}\left(\theta_{i}\right)+k_{P, P}
$$

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{p} and $k_{p, p}$ can be evaluated. How?

Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let $k: \Theta \times \Theta \rightarrow \mathbb{R}$ be the reproducing kernel of a RKHS \mathcal{K} of functions from Θ to \mathbb{R}; i.e $\forall \theta \in \Theta$, $k(\theta, \cdot) \in \mathcal{K}$ and $f(\theta)=\langle f, k(\theta, \cdot)\rangle_{\mathcal{K}}$ whenever $f \in \mathcal{K}$.

$$
\text { (Intuition: } \left.f(\theta)=\sum_{i} c_{i} k\left(\theta, \theta_{i}\right)\right)
$$

Consider an integral probability metric based on $\|\cdot\|_{\mathcal{K}}$:

$$
\begin{aligned}
\operatorname{diff}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=\left\|\frac{1}{m} \sum_{i \in S} k\left(\theta_{i}, \cdot\right)-\int k(\theta, \cdot) \mathrm{d} P(\theta)\right\|_{\mathcal{K}} \\
& =: \quad D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)
\end{aligned}
$$

which is known as the worst-case integration error for the RKHS \mathcal{K}.
Let's try to compute this:

$$
D_{\mathcal{K}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right)^{2}=\frac{1}{m^{2}} \sum_{i, j \in S} k\left(\theta_{i}, \theta_{j}\right)-\frac{2}{m} \sum_{i \in S} k_{P}\left(\theta_{i}\right)+k_{P, P}
$$

where $k_{P}:=\int k(\theta, \cdot) \mathrm{d} P(\theta) \in \mathcal{K}$ and $k_{P, P}:=\int k_{P} \mathrm{~d} P$.
Problem: We need to choose k carefully, so that k_{P} and $k_{P, P}$ can be evaluated. How?

A BOUND FOR THE ERROR IN THE NORMAL APPROXIMATION TO THE DISTRIBUTION OF A SUM OF DEPENDENT RANDOM VARIABLES

Stein Characterisation

Definition (Stein Characterisation)
A distribution P is characterised by the pair $(\mathcal{A}, \mathcal{F})$, consisting of a Stein Operator \mathcal{A} and a Stein Class \mathcal{F}, if it holds that

$$
\vartheta \sim P \quad \text { iff } \quad \mathbb{E}[\mathcal{A} f(\vartheta)]=0 \quad \forall f \in \mathcal{F} .
$$

Example (Stein, 1972)

- $P=N\left(\mu, \sigma^{2}\right)$ with density function $p(x)$
- $\mathcal{A}: f \mapsto \frac{\nabla(f)}{p}$
- $\mathcal{F}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}\right.$ s.t. $\nabla(f p) \in L^{1}(\mathbb{R})$ and $\left.\lim _{x \searrow-\infty} f(\theta) p(\theta)=\lim _{\theta \nearrow+\infty} f(\theta) p(\theta)\right\}$.

Stein Characterisation

Definition (Stein Characterisation)
A distribution P is characterised by the pair $(\mathcal{A}, \mathcal{F})$, consisting of a Stein Operator \mathcal{A} and a Stein Class \mathcal{F}, if it holds that

$$
\vartheta \sim P \quad \text { iff } \quad \mathbb{E}[\mathcal{A f}(\vartheta)]=0 \quad \forall f \in \mathcal{F} .
$$

Example (Stein, 1972)

- $P=N\left(\mu, \sigma^{2}\right)$ with density function $p(x)$
- $\mathcal{A}: f \mapsto \frac{\nabla(f p)}{p}$
- $\mathcal{F}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}\right.$ s.t. $\nabla(f p) \in L^{1}(\mathbb{R})$ and $\left.\lim _{x \searrow-\infty} f(\theta) p(\theta)=\lim _{\theta \nearrow+\infty} f(\theta) p(\theta)\right\}$.

Stein Characterisation

Target Distribution \mathbf{P}

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\}
$$

$$
\begin{aligned}
& \text { Theorem (O, Girolami and Chopin [2017]) } \\
& \text { The functions } \mathcal{A} f \text { just defined are precisely the elements of the unit ball in the RKHS } \mathcal{K}_{0}:=\mathcal{A K} \text { with } \\
& \text { kernel } \\
& \qquad \begin{array}{r}
k_{0}\left(\theta, \theta^{\prime}\right)=\nabla_{\theta} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right)+\frac{\nabla_{\theta} p(\theta)}{p(\theta)} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right) \\
\\
+\frac{\nabla_{\theta^{\prime}} p\left(\theta^{\prime}\right)}{p\left(\theta^{\prime}\right)} \nabla_{\theta} k\left(\theta, \theta^{\prime}\right)+\frac{\nabla_{\theta} p(\theta)}{p(\theta)} \frac{\nabla_{\theta^{\prime}} p\left(\theta^{\prime}\right)}{p\left(\theta^{\prime}\right)} k\left(\theta, \theta^{\prime}\right)
\end{array}
\end{aligned}
$$

In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.

Solution: Use k_{0} in an integral probability metric!

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\}
$$

```
Theorem (O, Girolami and Chopin [2017])
The functions \(\mathcal{A} f\) just defined are precisely the elements of the unit ball in the RKHS \(K_{0}:=\mathcal{A K}\) with kernel
```


In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.

Solution: Use k_{0} in an integral probability metric!

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\}
$$

Theorem (O, Girolami and Chopin [2017])
The functions $\mathcal{A} f$ just defined are precisely the elements of the unit ball in the RKHS $\mathcal{K}_{0}:=\mathcal{A K}$ with kernel

$$
\begin{aligned}
k_{0}\left(\theta, \theta^{\prime}\right)= & \nabla_{\theta} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right)+\frac{\nabla_{\theta} p(\theta)}{p(\theta)} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right) \\
& +\frac{\nabla_{\theta^{\prime}} p\left(\theta^{\prime}\right)}{p\left(\theta^{\prime}\right)} \nabla_{\theta} k\left(\theta, \theta^{\prime}\right)+\frac{\nabla_{\theta} p(\theta)}{p(\theta)} \frac{\nabla_{\theta^{\prime}} p\left(\theta^{\prime}\right)}{p\left(\theta^{\prime}\right)} k\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.
Solution: Use k_{0} in an integral probability metric!

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\} .
$$

Theorem (O, Girolami and Chopin [2017])
The functions $\mathcal{A} f$ just defined are precisely the elements of the unit ball in the $R K H S \mathcal{K}_{0}:=\mathcal{A K}$ with kernel

$$
\begin{aligned}
k_{0}\left(\theta, \theta^{\prime}\right)= & \nabla_{\theta} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right] \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right) \\
& +\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right) \nabla_{\theta}\right] k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right]\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right)\right] k\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\} .
$$

Theorem (O, Girolami and Chopin [2017])
The functions $\mathcal{A} f$ just defined are precisely the elements of the unit ball in the $R K H S \mathcal{K}_{0}:=\mathcal{A K}$ with kernel

$$
\begin{aligned}
k_{0}\left(\theta, \theta^{\prime}\right)= & \nabla_{\theta} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right] \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right) \\
& +\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right) \nabla_{\theta}\right] k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right]\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right)\right] k\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.
Solution: Use k_{0} in an integral probability metric!

Stein Operators in Hilbert Spaces

(Going to stick to $d=1$.)
Theorem (Chwialkowski et al. [2016])
Suppose that k is bounded, symmetric, cc-universal and satisfies $\mathbb{E}_{\vartheta \sim P}\left[(\Delta k(\vartheta, \vartheta))^{2}\right]<\infty$. Then P has Stein characterisation $(\mathcal{A}, \mathcal{F})$, consisting of

$$
\mathcal{A} f=\frac{\nabla(f p)}{p}, \quad \mathcal{F}=\mathcal{B}(k):=\left\{f \in \mathcal{K}:\|f\|_{\mathcal{K}} \leq 1\right\} .
$$

Theorem (O, Girolami and Chopin [2017])
The functions $\mathcal{A} f$ just defined are precisely the elements of the unit ball in the $R K H S \mathcal{K}_{0}:=\mathcal{A K}$ with kernel

$$
\begin{aligned}
k_{0}\left(\theta, \theta^{\prime}\right)= & \nabla_{\theta} \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right] \nabla_{\theta^{\prime}} k\left(\theta, \theta^{\prime}\right) \\
& +\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right) \nabla_{\theta}\right] k\left(\theta, \theta^{\prime}\right)+\left[\nabla_{\theta} \log p(\theta)\right]\left[\nabla_{\theta^{\prime}} \log p\left(\theta^{\prime}\right)\right] k\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

In particular, under regularity conditions, $\left(k_{0}\right)_{P}=0$ and $\left(k_{0}\right)_{P, P}=0$ are trivially computed.
Solution: Use k_{0} in an integral probability metric!

Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case integration error for the Stein RKHS \mathcal{K}_{0} :

$$
\begin{aligned}
\mathrm{KSD}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=D_{\mathcal{K}_{0}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right) \\
& =\sqrt{\frac{1}{m^{2}} \sum_{i, j \in S} k_{0}\left(\theta_{i}, \theta_{j}\right)-\frac{2}{m} \sum_{i \in S}\left(k_{0}\right)_{P}\left(\theta_{i}\right)+\left(k_{\theta}\right) P, P}
\end{aligned}
$$

Computation of the KSD does not require knowledge of the normalisation constant $\pi(y)$ and so it can be explicitly computed.

Gorham and Mackey [2017] established that
when the KSD is based on $k\left(\theta, \theta^{\prime}\right)$ being the inverse-multiquadric kernel. ($d_{\text {Dud }}$ is the Dudley metric and metrises weak convergence. $d_{\text {Wass }}$ is the Wasserstein metric, popular from optimal transport.)

Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case integration error for the Stein RKHS \mathcal{K}_{0} :

$$
\begin{aligned}
\mathrm{KSD}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=D_{\mathcal{K}_{0}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right) \\
& =\sqrt{\frac{1}{m^{2}} \sum_{i, j \in S} k_{0}\left(\theta_{i}, \theta_{j}\right)}
\end{aligned}
$$

Computation of the KSD does not require knowledge of the normalisation constant $\pi(y)$ and so it can be explicitly computed.

Gorham and Mackey [2017] established that

when the KSD is based on $k\left(\theta, \theta^{\prime}\right)$ being the inverse-multiquadric kernel. ($d_{\text {Dud }}$ is the Dudley metric and metrises weak convergence. $d_{\text {Wass }}$ is the Wasserstein metric, popular from optimal transport.)

Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case integration error for the Stein RKHS \mathcal{K}_{0} :

$$
\begin{aligned}
\mathrm{KSD}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=D_{\mathcal{K}_{0}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right) \\
& =\sqrt{\frac{1}{m^{2}} \sum_{i, j \in S} k_{0}\left(\theta_{i}, \theta_{j}\right)}
\end{aligned}
$$

Computation of the KSD does not require knowledge of the normalisation constant $\pi(y)$ and so it can be explicitly computed.

Gorham and Mackey [2017] established that
when the KSD is based on $k\left(\theta, \theta^{\prime}\right)$ being the inverse-multiquadric kernel. ($d_{\text {Dud }}$ is the Dudley metric and metrises weak convergence. $d_{\text {Wass }}$ is the Wasserstein metric, popular from optimal transport.)

Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case integration error for the Stein RKHS \mathcal{K}_{0} :

$$
\begin{aligned}
\mathrm{KSD}\left(\frac{1}{m} \sum_{i \in S} \delta\left(\theta_{i}\right), P\right) & :=D_{\mathcal{K}_{0}, P}\left(\left\{\theta_{i}\right\}_{i \in S}\right) \\
& =\sqrt{\frac{1}{m^{2}} \sum_{i, j \in S} k_{0}\left(\theta_{i}, \theta_{j}\right)}
\end{aligned}
$$

Computation of the KSD does not require knowledge of the normalisation constant $\pi(y)$ and so it can be explicitly computed.

Gorham and Mackey [2017] established that
when the KSD is based on $k\left(\theta, \theta^{\prime}\right)$ being the inverse-multiquadric kernel. ($d_{\text {Dud }}$ is the Dudley metric and metrises weak convergence. d Wass is the Wasserstein metric, popular from optimal transport.)

Stein Thinning of MCMC Output

Stein Thinning of MCMC Output

"Greedily pick states θ_{i} from the MCMC output to minimise KSD"

The "Stein Thinning" algorithm that we propose produces a subset $S=\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ consisting of:

$$
\begin{aligned}
i_{1} & \in \underset{i \in\{1, \ldots, n\}}{\arg \max } p\left(\theta_{i} \mid y\right) \\
i_{m} & \in \underset{i \in\{1, \ldots, n\}}{\arg \min } \mathrm{KSD}\left(\frac{1}{m} \sum_{j=1}^{m-1} \delta\left(\theta_{i_{j}}\right)+\frac{1}{m} \delta\left(\theta_{i}\right), P\right), \quad m \geq 2 \\
& =\underset{i \in\{1, \ldots, n\}}{\arg \min } \sum_{j=1}^{m-1} k_{0}\left(\theta_{i}, \theta_{i_{j}}\right)+\frac{k_{0}\left(\theta_{i}, \theta_{i}\right)}{2}
\end{aligned}
$$

This requires searching over a finite set only and can therefore be exactly implemented. The cost of selecting the m th point is $O(m n)$.

Stein Thinning of MCMC Output

"Greedily pick states θ_{i} from the MCMC output to minimise KSD"

The "Stein Thinning" algorithm that we propose produces a subset $S=\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ consisting of:

$$
\begin{aligned}
i_{1} & \in \underset{i \in\{1, \ldots, n\}}{\arg \max } p\left(\theta_{i} \mid y\right) \\
i_{m} & \in \underset{i \in\{1, \ldots, n\}}{\arg \min } \mathrm{KSD}\left(\frac{1}{m} \sum_{j=1}^{m-1} \delta\left(\theta_{i_{j}}\right)+\frac{1}{m} \delta\left(\theta_{i}\right), P\right), \quad m \geq 2 \\
& =\underset{i \in\{1, \ldots, n\}}{\arg \min } \sum_{j=1}^{m-1} k_{0}\left(\theta_{i}, \theta_{i_{j}}\right)+\frac{k_{0}\left(\theta_{i}, \theta_{i}\right)}{2}
\end{aligned}
$$

This requires searching over a finite set only and can therefore be exactly implemented. The cost of selecting the m th point is $O(m n)$.

Stein Thinning of MCMC Output

The figures we saw before were actually produced by Stein Thinning!

The MCMC need not even be P-invariant; full details in:

- M. Riabiz, W. Y. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey and CJO. Optimal Thinning of MCMC Output. JRSSB, 2022+.

Stein－Thinning．org

Stein Thinning

Optmally thinning of output from a sampling procedure，such as MCMC． Here the red samples are automarically chosen by Stein Thinning to provide a more accurate approximation to the distributional target，compared with the origimal MCMC output．［Read more］

View the Project on Girthub

About
Stein Thinning is a tool for post－processing the output of a sampling procedure，such as Markov chain Monte Carlo（MCMC）．It aims to minimise Stein discrepancy，selecting a subsequence of samples that best represent the distributional target．

The user provides two arrays：one containing the samples and another containing the corresponding gradients of the log－target．Stein Thinning retums a vector of indices，indicating which samples were selected．

In favourable circumstances，Stein Thinning is able to：
－automatically identify and remove the burn－in period from MCMC，
－perform bias－removal for biased sampling procedures，
－provide improved approximations of the distributional target
－offer a compressed representation of sample－based output．
Installation
Implementations of Stein Thinning are available for Python，R，and MATLAB：
－Install for Python
－Install for R
－Install for MATLAB

Non-Myopic and Batch Extensions

However, greedy selection may be sub-optimal. Also, the cost of selecting m points from n using Stein Thinning is high, at $O\left(m^{2} n\right)$.

- A non-myopic algorithm selects s points simultaneously.
- A mini-batch algorithm searches over a subset of $b \ll n$ candidates at each step.

Full details in:

- O. Teymur, J. Gorham, M. Riabiz, CJO. Optimal Quantisation of Probability Measures Using Maximum Mean Discrepancy. AISTATS, 2021.

Stein's Method in Computational Statistics

Stein's Method in Computational Statistics

Some other uses of Stein's method in facilitating Bayesian computation:

- Stein Points: Chen et al. [2018, 2019]
- Stein Importance Sampling: Liu and Lee [2017], Hodgkinson et al. [2020]
- Stein Variational Gradient Descent: Liu and Wang [2016], ...
- Control Variates: CJO et al. [2017], South et al. [2022], ...
- Variational Inference: Fisher et al. [2021], Matsubara et al. [2022], ...

Recent advances in Stein discrepancies:
= Diffusion-based Stein Operators: Gorham and Mackey [2015], Gorham et al. [2019]

- Stochastic Stein Discrepancy: Huggins and Mackey [2018], Gorham et al. [2020]

Stein's Method in Computational Statistics

Some other uses of Stein's method in facilitating Bayesian computation:

- Stein Points: Chen et al. [2018, 2019]
- Stein Importance Sampling: Liu and Lee [2017], Hodgkinson et al. [2020]
- Stein Variational Gradient Descent: Liu and Wang [2016], ...
- Control Variates: CJO et al. [2017], South et al. [2022], ...
- Variational Inference: Fisher et al. [2021], Matsubara et al. [2022], ...

Recent advances in Stein discrepancies:

- Diffusion-based Stein Operators: Gorham and Mackey [2015], Gorham et al. [2019]
- Stochastic Stein Discrepancy: Huggins and Mackey [2018], Gorham et al. [2020]

References

W. Chen, L. Mackey, J. Gorham, F. Briol, and CJO. Stein points. In ICML, 2018.
W. Y. Chen, A. Barp, F. X. Briol, J. Gorham, L. Mackey, and CJO. Stein point Markov chain Monte Carlo. In ICML, 2019.
K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In ICML, 2016.

CJO, M. Girolami, and N. Chopin. Control functionals for Monte Carlo integration. JRSSB, 79(3):695-718, 2017.
M. A. Fisher, T. Nolan, M. M. Graham, D. Prangle, and CJO. Measure transport with kernel Stein discrepancy. AISTATS, 2021.
J. Gorham and L. Mackey. Measuring sample quality with Stein's method. In NeurIPS, 2015.
J. Gorham and L. Mackey. Measuring Sample Quality with Kernels. In ICML, 2017.
J. Gorham, A. B. Duncan, S. J. Vollmer, and L. Mackey. Measuring sample quality with diffusions. AoAP, 29(5):2884-2928, 2019.
J. Gorham, A. Raj, and L. Mackey. Stochastic Stein discrepancies. In NeurIPS, 2020.
L. Hodgkinson, R. Salomone, and F. Roosta. The reproducing Stein kernel approach for post-hoc corrected sampling. arXiv:2001.09266, 2020.
J. Huggins and L. Mackey. Random feature Stein discrepancies. In NeurIPS, 2018.
Q. Liu and J. D. Lee. Black-box importance sampling. In AISTATS, 2017.
Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian inference algorithm. In NeurlPS, 2016.
Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests. In ICML, 2016.
T. Matsubara, J. Knoblauch, F.-X. Briol, and CJO. Robust generalised Bayesian inference for intractable likelihoods. JRSSB, 2022.
L. F. South, T. Karvonen, C. Nemeth, M. Girolami, and CJO. Semi-exact control functionals from Sard's method. Biometrika, 2022.

