Optimization, Speed-up, and Outof-distribution Prediction in Deep Learning

Wei Chen Institute of Computing Technology Chinese Academy of Sciences

Deep Learning

Model is BIGGER

The Challenges in Machine Learning

Theoretic ML

1. Optimization: G-SGD

Distributed ML

2. Synchronization: DC-ASGD

Trustworthy ML

3. OOD prediction: Causal Learning

Optimization: G-SGD

Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space (ICLR'19)

Joint work with Qi Meng, Shuxin Zheng, Huishuai Zhang, Qiwei Ye, Zhi-Ming Ma, Nenghai Yu, and Tie-Yan Liu.

<u>Code</u>

Weight Space is Actually Redundant…

• Positively scale-invariant (PSI) functions like ReLU, pReLU, max pooling and average pooling:

 $\sigma(c \cdot x) = c \cdot \sigma(x), \forall c > 0$

 With PSI activation functions, neural networks with different weights may correspond to the same mathematical function, meaning that the weight space has redundancy. $f_{w_1,w_2,w_3}(\cdot) = f_{cw_1,cw_2,\frac{w_3}{c}}(\cdot), \forall c > 0$

${m G}$ -invariant Networks vs. ${m G}$ -variant Weights

- Neural networks with PSI activation functions are *G*-invariant, however, the weights in such networks, as functions, are NOT *G*-invariant.
 - Redundancy in weight space: gradients of equivalent networks could be different (Neyshabur, et al., 2015)
 - Problematic geometric measure in weight space (Dinh, Bengio, et al. ,2017)

Path:
$$p = (i_0, ..., i_L)$$

Value of path: the product of the weights over the path

$$v_w(p) = w_{i_0, i_1}, \dots, w_{i_{L-1}, i_L},$$

Activation status of path: only if all the nodes along the path are active, the path is active.

$$a_w(p, x) = \prod_{l=1}^{L} I[o_{i_l}(x; w) > 0]$$

Theorem 1: The values and activation status of paths are *G***-invariant**, i.e., for arbitrary path p, we have

$$\begin{aligned} v_w(p) &= v_{g(w)}(p), \forall g \in \mathcal{G} \\ a_w(p, x) &= a_{g(w)}(p, x), \forall g \in \mathcal{G} \end{aligned}$$

Path Representation of Neural Networks [Balduzzi, 2015]

Dimensionality of Path Space

Theorem 2: Consider a ReLU neural network with *m* weights and structure matrix *A*, then,

Rank(A) = m - H,

where *H* is the number of hidden nodes for fully-connected NN and the number of feature maps for CNN, respectively.

Definition 5: (Basis Paths) We define the basis paths of ReLU neural networks as the basis column vectors of the structure matrix.

\mathcal{G} -SGD: the SGD in PSI Space

Experimental Results

		C10	C100
Plain-34	SGD	7.76 (±0.17)	$36.41(\pm 0.54)$
	\mathcal{G} -SGD	7.00 (±0.10)	30.74 (±0.29)
ResNet-34	SGD	7.13 (±0.22)	$28.60(\pm 0.26)$
	\mathcal{G} -SGD	6.66 (±0.13)	27.74 (±0.06)

Dataset: CIFAR10 Model: (1) deep convolutional net (plain34) ;(2) Deep residual net (resnet34) Learning rate: 1.0 Training loss Test accuracy 0.94 Plain-34 SGD Plain-34 G-SGD 100 ResNet-34 SGD 0.93 ResNet-34 G-SGD CIFAR-10 10^{-1} 10^{-2} 0.92 10-3 0.91 120 40 80 120 160 40 80 160 0 0 0.75 10⁰ CIFAR-100 0.70 10^{-1} 0.65 10-2 10^{-3} 0.60 120 40 80 120 160 0 80 160 0 40 Epoch Epoch

- Xufang Luo et al, Path-BN: Towards Effective Batch Normalization in the Path Space for ReLU Networks. UAI'21
- Yue Wang et al, The Scale-Invariant Space for Attention Layer in Neural Network. Neurocomputing 392 (2020): 1-10.
- Yue Wang et al, Positively Scale-Invariant Space for Recurrent Neural Networks with ReLU Activations. Preprint
- Juanping Zhu et al, Interpreting the Basis Path Set in Neural Networks. Journal of Systems Science and Complexity 2021, Pages 1-13

Talk @ DataSig

Speed-up: DC-ASGD

Asynchronous Stochastic Gradient Descent with Delay Compensation (ICML'17) Joint work with Shuxin Zheng, Qi Meng, Taifeng Wang, Zhi-Ming Ma, and Tie-Yan Liu.

Distributed Deep Learning

• Big data + Big model \gg Capacity of a single machine

Asynchronous SGD

ASGD Training Process

Talk @ DataSig

Delayed Gradient

- SGD
 - $W_{t+\tau+1} = W_{t+\tau} \eta * g(W_{t+\tau}, x_t)$
- Async SGD

•
$$W_{t+\tau+1} = W_{t+\tau} - \eta * g(W_t, x_t)$$

 $g(W_{t+\tau}, x_t) \neq g(W_t, x_t)$

Delayed Gradient

- ResNet 20
- CIFAR-10
- 1/4/8 GPUs

# workers	algorithm	error(%)
1	SGD	8.65 [†]
4	ASGD	9.27
8	ASGD	10.26

Delay Compensation in ASGD

 $g(W_{t+\tau}) \neq g(W_t)$

• Taylor Expansion at W_t

 $g(W_{t+\tau}) = g(W_t) + \nabla g(W_t) \cdot (W_{t+\tau} - W_t) + \frac{1}{2} (W_{t+\tau} - W_t)^T H g(W_t) \cdot (W_{t+\tau} - W_t) + O(||W_{t+\tau} - W_t||^3)$

Async SGD : 0th Order Approximation $g(W_{t+\tau}) = g(W_t)$

Delay Compensation in ASGD

 $g(W_{t+\tau}) \neq g(W_t)$

• Taylor Expansion at W_t

 $g(W_{t+\tau}) = g(W_t) + \nabla g(W_t) \cdot (W_{t+\tau} - W_t) + \frac{1}{2} (W_{t+\tau} - W_t)^T H g(W_t) \cdot (W_{t+\tau} - W_t) + O(||W_{t+\tau} - W_t||^3)$

Delay Compensated Gradient: 1st Order Approximation

$$g(W_{t+\tau}) = g(W_t) + \nabla g(W_t) \cdot (W_{t+\tau} - W_t)$$

where $g(W_t) = \nabla f(W_t)$ and $\nabla g(W_t) = Hf(W_t)$,

H is Hessian Matrix.

Talk @ DataSig

Hessian Matrix

Fisher Information Matrix

$$\epsilon_t \triangleq \mathbb{E}_{(y|x,\mathbf{w}^*)} ||G(\mathbf{w}_t) - H(\mathbf{w}_t)|| \to 0, t \to \infty$$

Talk @ DataSig

Hessian Matrix

1. Becker S, Le Cun Y. Improving the convergence of back-propagation learning with second order methods[C]//Proceedings of the 1988 connectionist models summer school. 1988: 29-37.

Algorithm

Algorithm	DC-ASGD:	worker m
-----------	----------	----------

repeat

Pull \mathbf{w}_t from the parameter server. Compute gradient $g_m = \nabla f_m(\mathbf{w}_t)$. Push g_m to the parameter server. **until** forever Algorithm 2 DC-ASGD: parameter server **Input:** learning rate η , variance control parameter λ_t . **Initialize:** t = 0, \mathbf{w}_0 is initialized randomly, $\mathbf{w}_{bak}(m) =$ $\mathbf{w}_0, m \in \{1, 2, \cdots, M\}$ repeat if receive " g_m " then $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \cdot \left(g_m + \lambda_t g_m \odot g_m \odot (\mathbf{w}_t - \mathbf{w}_{bak}(m)) \right)$ $t \leftarrow t+1$ else if receive "pull request" then $\mathbf{w}_{bak}(m) \leftarrow \mathbf{w}_t$ Send \mathbf{w}_t back to worker m. end if until forever

Convergence Rate

• DC-ASGD and ASGD will converge at the same rate.

$$O\left(\frac{V}{\sqrt{Tb}}\right)$$

*More details in paper

• DC-ASGD has larger tolerant for delay τ .

$$\tau \leq \min\left\{\frac{L_2\gamma}{C_\lambda}, \frac{\gamma}{C_\lambda}, \frac{\sqrt{T\gamma}}{\tilde{C}}, \frac{L_2T\gamma}{4\tilde{C}}\right\}$$

where $\gamma = \sqrt{\frac{L_2TV^2}{2D_0b}}$ is the upper-bound of ASGD τ .

•

Experiments

- ResNet 20
- CIFAR-10
- 1/4/8 GPUs

# workers	algorithm	error(%)
1	SGD	8.65†
4	ASGD	9.27
	SSGD	9.17
	DC-ASGD-c	8.67
	DC-ASGD-a	8.19
8	ASGD	10.26
	SSGD	10.10
	DC-ASGD-c	9.27
	DC-ASGD-a	8.57

Figure 2. Error rates of the global model w.r.t. number of effective passes of data on CIFAR-10

Experiments

- ResNet 20
- CIFAR-10
- 1/4/8 GPUs

# workers	algorithm	error(%)
1	SGD	8.65†
4	ASGD	9.27
	SSGD	9.17
	DC-ASGD-c	8.67
	DC-ASGD-a	8.19
8	ASGD	10.26
	SSGD	10.10
	DC-ASGD-c	9.27
	DC-ASGD-a	8.57

Figure 3. Error rates of the global model w.r.t. wallclock time on CIFAR-10

Talk @ DataSig

Experiments

- ResNet 50
- ImageNet1K
- 16 GPUs

# workers	algorithm	error(%)
16	ASGD	25.64
	SSGD	25.30
	DC-ASGD-a	25.18

Figure 4. Error rates of the global model w.r.t. both number of effective passes and wallclock time on ImageNet

OOD Prediction: Causal Learning

Recovering Latent Causal Factor for Generalization to Distributional Shifts (NeurIPS' 2021) Joint work with Xinwei Sun, Chang Liu, Botong Wu, Xiangyu Zheng, Tao Qin, and Tie-Yan Liu <u>Code</u>

Interpretability, Robustness, and Reliability

"<u>Universal adversarial perturbations</u>", by Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

Adversarial Perturbations => "Reliability"

Out-of-distribution Instances => "Robustness"

onature

Why "interpretability" matters?

• To avoid DNN models learn the spurious correlations

An example for sampling bias inherited from data.

Intervention brings Causation

Ingredients for identifying causation:

(soft)-intervention or diverse extent of correlation.

Talk @ DataSig

The Causal Model

The structural causal model $M \coloneqq (G, \mathcal{F}, P(\epsilon))$,

- *G* is the causal graph
- $\mathcal{F}:=(f_x, f_y, f_s, f_v, f_c)$ is the data generating function (e.g., $f_s(c, \epsilon_s)$ denotes the generation of S)
- ϵ denotes the values of all the unobservable variables

Out-of-Distribution Prediction

Given $\{\mathcal{D}^e \coloneqq \{x_i^e, y_i^e\}_{i \in [n_e]}\}_{e \in \mathcal{E}_{train}}$. **Goal**: Learn f that generalizes well to $\mathcal{E} \sqsupset \mathcal{E}_{train}$.

Latent Causal Invariant Model (LaCIM)

Given x, inference s^* from $p_{f_x}(x|s, v)$ and $p_{f_y}(y|s^*)$ for Prediction

A set of structural causal models $M^e \coloneqq (G, \mathcal{F}^e, P(\epsilon))$ augmented with the **domain variable** D

- *G* is the causal graph
- For each $e \in \mathcal{E}$, the $\mathcal{F}^e \coloneqq \{f_x, f_y, f_s^e, f_v^e, f_c^e\}$ denotes the generating mechanism of X, Y, S, V, C.
- ϵ denotes the values of all the unobservable variables,

Identifiability of LaCIM

Definition: (Pearl, 2000) A quantity Q(M) is identifiable, given a set of (causal) assumptions A, if two models M_1 and M_2 that satisfy A, we have

 $P(M_1) = P(M_2) \Rightarrow Q(M_1) = Q(M_2)$

Theorem: Suppose the *S*-*V* correlation in multiple datasets $\mathcal{D}^e \coloneqq \{x_i^e, y_i^e\}_{e \in \mathcal{E}}$ are diverse enough and the noise in additive, then for any $x \leftarrow f_x(s^*, v^*), y \leftarrow f_y(v^*)$, such that:

• Identifiability of Causal Factor: there exists an invertible function h, s. t., $\tilde{s} = h(s^*)$.

• Identifiability of Invariant Predictor: $\tilde{p}(y|\tilde{s}) = p^*(y|s^*)$

Learning Method

Train $\mathcal{L}^{e}(\theta,\psi) = \mathbb{E}_{p^{e}(x,y)} \left(\mathbb{E}_{q_{\psi}^{e}(s,v|x,y)} \log \frac{p_{\theta}^{e}(x,y,s,v)}{q_{\psi}^{e}(s,v|x,y)} \right)$ where $p_{\theta}^{e}(x,y,s,v) = p_{\theta}(x|s,v)p_{\theta}(y|s)p^{e}(s,v)$.

By our causal model, we re-parameterize q_{ψ}^{e} as below, $q_{\psi}^{e}(s, v | x, y) = \frac{q_{\psi}^{e}(s, v | x)q_{\psi}^{e}(y | s)}{q_{\psi}^{e}(y | x)}$

Variational distribution $q_{\psi}^{e}(s, v | x, y)$ $= q_{\psi}(s, v | x, y, d)$ Inference

1. Infer s^* from $\max_{s,v} \log p_{\theta}(x|s,v) + \lambda J(s,z)$ 2. Predict via $\operatorname{argmax}_{v} p_{\theta}(y|s^*)$

Experimental Results

Table 1: Accuracy (%) on test domain. Average over 10 runs.

Dataset	NICO				CMNIST		ADNI $(m = 2)$		
	m =	8	m = 1	14	m =	2	D: Age	D: TAU	# Params
Method	ACC	# Params	ACC	# Params	ACC	# Params	ACC	ACC	
ERM	60.3 ± 2.8	18.08M	59.3 ± 2.1	18.08M	91.9 ± 0.9	1.12M	62.1 ± 3.2	64.3 ± 1.0	28.27M
DANN	58.9 ± 1.7	19.13M	60.1 ± 2.6	26.49M	84.8 ± 0.7	1.1M	61.0 ± 1.5	65.2 ± 1.1	30.21M
MMD-AAE	60.8 ± 3.4	19.70M	64.8 ± 7.7	19.70M	92.5 ± 0.8	1.23M	60.3 ± 2.2	65.2 ± 1.5	36.68M
DIVA	58.8 ± 3.4	14.86M	58.1 ± 1.4	14.87M	86.1 ± 1.0	1.69M	61.8 ± 1.8	64.8 ± 0.8	33.22M
IRM	61.4 ± 3.8	18.08M	62.8 ± 4.6	18.08M	92.9 ± 1.2	1.12M	62.2 ± 2.6	65.2 ± 1.1	28.27M
sVAE	60.4 ± 2.1	18.25M	64.3 ± 1.2	19.70M	93.6 ± 0.9	0.92M	62.7 ± 2.5	66.6 ± 0.8	37.78M
LaCIM (Ours)	63.2 ± 1.7	18.25M	66.4 ± 2.2	19.70M	96.6 ± 0.3	0.92M	63.8 ± 1.1	67.3 ± 0.9	37.78M

Visualization

LaCIM

ERM LaCIM

ERM LaCIM

(a) Cat on grass

(c) Dog on grass

(b) Cat on snow

(d) Dog on snow

Discussions

- All models are wrong, but some are useful. The causal graph should rely on the belief of generating process and the definition of Y.
- Duality b/w causal discovery ("link the nodes") and causal representation learning ("fill in the blanks").

Thanks!

<u>chenwei2022@ict.ac.cn</u> <u>https://weichen-cas.github.io/</u>