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Timeline for Particle Filter development

Particle Filters for DA (model reduction, tempering, jittering, nudging)
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Final Remarks

Joint work with Igor Shevchenko (Imperial)

https://www.imperial.ac.uk/ocean-dynamics-synergy/

◦ C Cotter, D Crisan, D Holm, W Pan, I Shevchenko, Data assimilation for a
quasi-geostrophic model with circulation-preserving stochastic transport noise, Journal
of Statistical Physics, 1-36, 2020.
◦ D Crisan, I Shevchenko, Particle filters with nudging, work in progress.
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. Motivation

Data Assimilation for GFD models

Geophysical Fluid Dynamics (GFD) models are used extensively to describe
the evolution of the atmosphere and the oceans and play a crucial role in
numerical weather prediction (NWP).

What is Data Assimilation ?

set of methodologies that combines past knowledge of a system in the
form of a numerical model with new information about that system in the
form of observations of that system.
designed to improve forecasting, reduce model uncertainties and adjust
model parameters.
term used mainly in the computational geoscience community
major component of Numerical Weather Prediction

Variational DA: combines the model and the data
through the optimisation of a given criterion
(minimisation of a so-called cost-function).

Sequential DA: uses a set of model trajec-
tories/possible scenarios that are intermittently
updated according to data and are used to infer
the past, current or future position of a system.

Hurricane Irma forecast: a. ECMWF, b. USA Global Forecast
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. What is stochastic filtering ?

DA recast as a stochastic filtering problem

Discrete framework: {Xt , Yt}t≥0 Markov process

X the signal process - “hidden component”, X[0,t] , (X0, ..., Xt).

Y the observation process - “the data” Y[0,t] , (Y0, ..., Yt).

The filtering problem : Find the conditional distribution of the signal Xt given
the observation: πt (dxt) = P(Xt ∈ dxt |Y[0,t] = y[0,t])

The signalprocess{Xt}t≥0 Markov chain, X0 ∼ π0 (dx0)

• P (Xt ∈ dxt |Xt−1 = xt−1) = Kt (xt−1, dxt)

• Example: Xt = b (Xt−1) + σ (Xt−1) Bt , Bt ∼ N (0, 1) i.i.d.

The observation process

• P
(
Yt ∈ dyt |X[0,t] = x[0,t], Y[0,t−1] = y[0,t−1]

)
= P (Yt ∈ dyt |Xt = xt) = gt(yt |xt)dyt

• Example: Yt = h (Xt) + Vt , Vt ∼ N (0, 1) i.i.d.
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. Classical particle filter

πt−1
Kt−−−−−→

model
forecast

prediction

Ktπt−1 =: pt
non-linear : gt∗−−−−−−−−−→

assimilation
analysis
update

gt ∗ pt= πt

1. Initialisation [t = 0].

For i = 1, ..., N, sample x (i)
0 from π0,

2. Iteration [t − 1 to t ].
Let x (i)

t−1, i = 1, . . . , n be the positions of the particles at time t − 1.
Step 1.

For i = 1, ..., n, sample x̄ (i)
t from Kt

(
x (i)

t−1, dxt

)
.

Compute the (normalized) weight ā(i)
t = gt(x̄

(i)
t )/(

∑n
j=1 gt(x̄

(j)
t )).

Step 2.

Sample n-times from π̄N
t =

∑N
i=1 ā(i)

t δx̄ (i)
t

Denote the positions of the particles by x (i)
t , i = 1, . . . , n.

πN
t =

1
N

N∑

i=1

δx (i)
t

' πt

Asymptotic Consistency:
lim

N→∞
πN

t = πt .
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. Timeline for particle filter development

Theoretical papers:

• D. Crisan, A. Lopez-Yela, J. Miguez, Stable approximation schemes for optimal
filters. SIAM/ASA J. Uncertain. Quantification 2020.
• D. Crisan, J. Miguez, Nested particle filters for online parameter estimation in
discrete-time state-space Markov models, 2018.
• A. Beskos, D. Crisan, A Jasra, K. Kamatani, Y. A. Zhou, A stable particle filter for a
class of high-dimensional state-space models, 2017.
• A. Beskos, D. Crisan, A Jasra, On the stability of sequential Monte Carlo methods in
high dimensions, 2014.
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. Car Tracking

Car tracking using noisy video images

Signal (v̇t , vt , θt , xt , yt , τt)

(x , y) be the coordinates of the car (the center of the rear axle), v
its tangential velocity (v̇ is the rate of change of v ),
τ orientation (the angle between the direction of the car and the x-axis)
θ the steering angle

Signal Observation




dv̇t = αdW 1
t

dvt = vtdt
dθt = −βθt dt + γdW 2

t
dxt = vt cos(τt)dt
dyt = vt sin(τt)dt
dτt = a−1vtθtdt






dx̄t = vt cos(τt)dt +δ3dW 3
t

d ȳt = vt sin(τt)dt +δ4dW 4
t

d τ̄t = a−1vtθt dt +δ5dW 5
t
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. DA workshop
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. Particle filters for DA

DA is a hard problem

The likelihood function xk 7→ gt(xk ) can convey a lot of information about the
signal, especially so in high dimensions. If this is the case, the problem
becomes much harder. In particular, using the transition kernel as proposal,
will be ineffective. Add-on techniques:

• Model Reduction (High 7→Low Res) • Tempering
• Nudging • Jittering

πN
t−1

nudging
︷ ︸︸ ︷
−→−→pN

t

adaptive tempering+jiterring
︷ ︸︸ ︷
−→−→−→−→ πN

t

model reduction: coarsen the grid used for the numerical algorithm (the
evolution of the particles) that approximates the dynamical system from
O(106) to O(104).
tempering: introduce a sequence of artificial densities, starting from a
simple density and moving to the one of interest.
jittering: reduce sample degeneracy through an MCMC procedure.
nudging: correct the particle motion to bring them closer to the true state
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. Framework

Case study: two-layer quasi-geostrophic model for a β-plane channel flow with
O(106) degrees of freedom. The model is reduced by following the stochastic
variational approach for geophysical fluid dynamics introduced in Holm[2015]
as a framework for deriving stochastic parametrisations for unresolved scales.
Model reduction: We run the PF with O(104) degrees of freedom.

πN
t−1

nudging
︷ ︸︸ ︷
−→−→pN

t

adaptive tempering+jiterring
︷ ︸︸ ︷
−→−→−→−→ πN

t

Example: 2-layer quasi-geostrophic model

The two-layer deterministic QG equations for the potential vorticity (PV) q:

∂q1

∂t
+ u1 ∙ ∇q1 = νΔ2ψ1 − β

∂ψ1

∂x
,

∂q2

∂t
+ u2 ∙ ∇q2 = νΔ2ψ2 − μΔψ2 − β

∂ψ2

∂x
,

(1)

where ψ is the stream function, β is the planetary vorticity gradient, μ is the
bottom friction parameter, ν is the lateral eddy viscosity, and u = (u, v) is the
velocity vector. The computational domain Ω = [0, Lx ] × [0, Ly ] × [0, H] is a
horizontally periodic flat-bottom channel of depth H = H1 + H2 given by two
stacked isopycnal fluid layers of depth H1 and H2.
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. Framework

Forcing in (1) is introduced via a vertically sheared, baroclinically unstable
background flow

ψi → −Ui y + ψi , i = 1, 2, (2)

where the parameters Ui are background-flow zonal velocities. The PV
anomaly and stream function are related through two elliptic equations:

q1 = Δψ1 + s1(ψ2 − ψ1), (3a)

q2 = Δψ2 + s2(ψ1 − ψ2), (3b)

with stratification parameters s1, s2. The system is augmented by the integral
mass conservation constraint

∂

∂t

∫∫

Ω

(ψ1 − ψ2) dydx = 0, (4)

by the periodic horizontal boundary conditions, ψ
∣
∣
∣
Γ2

= ψ
∣
∣
∣
Γ4

, ψ = (ψ1, ψ2) ,

and no-slip boundary conditions u
∣
∣
∣
Γ1

= u
∣
∣
∣
Γ3

= 0 set at northern and southern

boundaries of the domain.
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. Framework

Model reduction: The evolution of the particles satisfy a stochastic version of
the QG equations (1) is given by:

dq1 +

(

u1 dt +
K∑

k=1

ξk
1 ◦ dW k

t

)

∙ ∇q1 =

(

νΔ2ψ1 − β
∂ψ1

∂x

)

dt ,

dq2 +

(

u2 dt +
K∑

k=1

ξk
2 ◦ dW k

t

)

∙ ∇q2 =

(

νΔ2ψ2 − μΔψ2 − β
∂ψ2

∂x

)

dt .

(5)

The stochastic terms marked in red color is the only difference from the
deterministic QG model (1), all other equations are the same as in the
deterministic case.

Stochastic solutions on signal grid Gs = {257 × 129}.

Observation Y velocity observed at on a grid Gd = {4 × 8}.

The size of the ensemble is taken to be N = 100 and the number of
Brownian motion (independent sources of stochasticity) is taken to be
K = 32. This is enough to reasonably quantify the uncertainty of the
model: the spread of the ensemble will not increase substantially by
taking more particles and/or sources of noise (BMs).
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. Framework

The observations data Yt is an 64-dimensional process that consists of
noisy measurements of the velocity field u taken at a point belonging to
the data grid Gd :

Yt := Ps
d (Zt) + η,

where Ps
d : Gs → Gd is a projection operator from the signal grid Gs to the

data grid Gd , η = N (0, Iσ) is a normally distributed random vector, with
mean vector 0 = (0, . . . , 0) and diagonal covariance matrix
Iσ = diag(σ2

1 , . . . , σ2
M).

Rather than choosing an arbitrary σ = (σ1, . . . , σM) for the standard
deviation of the noise, we use the standard deviation of the velocity field
computed over the coarse grid cell of the signal grid.
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. Framework

We introduce the likelihood-weight function

W(X, Y) = exp

(

−
1
2

M∑

i=1

∥
∥
∥
∥

Ps
d (Xi) − Yi

σi

∥
∥
∥
∥

2

2

)

, (6)

with M = 32 being the number of grid points (weather stations).

In order to measure the variability of the weights (6) of particles we use
the effective sample size:

ESS(w) =

(
N∑

i=1

(wi)
2

)−1

, w := w

(
N∑

i=1

wi

)−1

, (7)

which is close to the ensemble size N if the particles have weights that
are close to each other, and decays to one, as the ensemble degenerates
(i.e. there are fewer and fewer particles with large weights and the rest
have small weights).

One should resample for the weighted ensemble if the ESS drops below
a given threshold, N∗,

ESS< N∗ = 80.
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. Nudging

Nudging

Nudging: a ’correction’ applied to the state model evolution to bring the
particles closer to the true state ⇒ a nudging term N (α) is added to the
model

(ti−1, ti ] : Given the ensemble {Xn(ti−1)}N
n=1 we want to assimilate

observational data Yti in order to obtain a new ensemble {Xn(ti)}N
n=1 that

defines πN
ti :

Obtain observation Yti

Evolve Xn(ti−1)
modified kernel
−−−−−−−−−→ X̃n(ti)

X̃n(ti) = Xn(ti−1) + f (Xn(ti−1), Yti ) + σ (Xn(ti−1)) Bn
ti

Define new weights according to the ratio between the law of X̃n(ti) and that
of Xn(ti)
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. Nudging

We correct the solution of SPDE (5) so as to keep the particles closer to the
true state. To do so, we add a ‘nudging term’ (marked in blue) to SPDE (5),

dqi(λ) +

(

u i(λ) dt +
K∑

k=1

ξk
i ◦ dW k

t +
K∑

k=1

ξk
i λk dt

)

∙ ∇qi(λ) = Fi dt , i = 1, 2.

(8)

q depends on the parameter λ. The trajectories of the particles will be
solutions of this perturbed SPDE (8). To account for the perturbation, the
particles will have new weights given by

exp

(

−

([
1
2

M∑

i=1

∥
∥
∥

Ps
d (qtj+1(λ)) − Ytj+1

σi

∥
∥
∥

2

2
+
∑

k

∫ tj+1

tj

(

λ2
k

dt
2

− λk dWk

)]))

.

(9)
These weights measure the likelihood of the position of the particles given the
observation, and the last term accounts for the change of probability
distribution from q to q(λ). We wish to choose λ so as to maximize these
likelihoods.
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. Nudging

In other words, we look to solve the equivalent minimization problem

min
λk , k∈[1..K ]

[
1
2

M∑

i=1

∥
∥
∥

Ps
d (qtj+1(λ)) − Ytj+1

σi

∥
∥
∥

2

2
+

∫ tj+1

tj

(

λ2
k

dt
2

− λk dWk

)]

(10)

together with (8). In general this is a challenging nonlinear optimisation
problem, especially if one allows the λk ’s to vary in time. For constant λk ’s the
minimization problem (10) becomes

min
λk , k∈[1..K ]

[
1
2

M∑

i=1

∥
∥
∥

Ps
d (qtj+1(λ)) − Ytj+1

σi

∥
∥
∥

2

2
+

K∑

k=1

(

λ2
k
δt
2

− λkΔWk

)]

, (11)

where δt is the time step. Let us re-write

qtj+1(λ) = A(qtj+1/2) +
K∑

k=1

Bk (q̃tj+1)(ΔWk + λkδt),

where qtj+1/2 and q̃tj+1 are computed in the prediction and the extrapolation
steps, respectively.
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. Nudging

We can then re-write the minimisation problem (11) as

min
λk , k∈[1..K ]

V(q(λ), Y, λ), (12)

where
V(q(λ), Y, λ) = Q + Q1(λ) + Q2(λ, ΔW1, ..., ΔWK ),

This is a quadratic minimization problem with the optimal value λ depending
(linearly) on the increments ΔW1, ..., ΔWK . This optimal choice is not allowed
as the parameter λ can only be a function of all the approximation q̃tj+1 , qtj+1/2

and Ytj+1 (since it needs to be adapted to the forward filtration of the set of
Brownian motions {Wk}). To ensure that this constraint is satisfied, we
minimise the conditional expectation of V(q(λ), Y, λ) given the q̃tj+1 , qtj+1/2 and
Ytj+1 , that is

min
λk , k∈[1..K ]

E
[
V(q(λ), Y, λ)|q̃tj+1 , qtj+1/2 , Ytj+1

]
.

This functional is quadratic in λ, and hence the optimization can be done by
solving a linear system.

Important ! The resulting particle filter remains asymptotically consistent.
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. Numerical Experiment

Twin experiment (signal is the solution of the SPDE run on the course grid)

Mean/Spread after combined N+T+J N+J compared with T+J N+J (3 runs) compared with T+J

Outcome:

• Nudging reduces the MSE substantially.
• On their own, nudging and tempering have comparable results despite
nudging being computationally cheaper.
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. Numerical Experiment

True experiment (signal is the solution of the PDE run on the fine grid)

up
1 vp

1

t t
Figure: no DA vs DA (Te+Ji) vs Signal DA (Te+Ji+Nu)

Outcome: Nudging reduces the diameter of the cloud of particles.
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. Final remarks

Final remarks:

We are developing particle filter based data assimilation methodology for
high dimensional fluid dynamics models.

The particle filter combines model reduction, tempering, jittering, and
nudging and has been tested on the two layer quasi-geostrophic model
with O(106) degrees of freedom. Only a minute fraction of these are
noisily observed.

The nudging procedure brings improvements to the combinations of the
tempering and jittering both in terms of the relative bias (RB) and
ensemble mean relative l2-norm error.

Further observation data sources are currently being explored:

Drifter Data (Lagrangian Data Assimilation)
Satelite observations https://www.youtube.com/watch?v=nTPTzHx3a74
Commercial aircraft data.
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. Synergy Grant 2020-2026

ERC Synergy grant 2020-2026 (https://www.imperial.ac.uk/ocean-dynamics-synergy/)

Ways to interact:

Annual STUOD conferences

Monthly sandboxes

Annual Hackathons

Postdocs/PhD students exchanges
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. References

Some of my papers on particle filters
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• C Cotter, D Crisan, D Holm, W Pan, I Shevchenko, Modelling uncertainty using stochastic transport noise in a
2-layer quasi-geostrophic model, Foundations of Data Science 2 (2), 173, 2020.
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• A Beskos, D Crisan, A Jasra, On the stability of sequential Monte Carlo methods in high dimensions, The
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