Path development and the Length Conjecture

Xi Geng
joint work with Horatio Boedihardjo

University of Melbourne, Australia

DataSig Seminar, February 2021

Motivation

Let $\gamma:[0, L] \rightarrow \mathbb{R}^{d}$ be a continuous path with bounded variation, parametrised at unit speed.

The signature of γ is defined as:

$$
S(\gamma)=\sum_{n=0}^{\infty} \int_{0<t_{1}<\cdots<t_{n}<L} d \gamma_{t_{1}} \otimes \cdots \otimes d \gamma_{t_{n}}
$$

Theorem (Hambly-Lyons 2010)

The path γ is uniquely determined by its signature $S(\gamma)$ up to tree-like piece.

Tree-like Pieces

Tree-reduced Paths

A tree-reduced path is a path that does not contain any tree-like pieces.

- Among all BV paths with the same signature g, there is a unique tree-reduced representative (up to reparametrisation).
- This tree-reduced path has the minimal length among all paths with the same signature.
- There is a one-to-one correspondence between tree-reduced BV paths and their signatures.

In principle, parametrisation-free properties of a tree-reduced path should be reconstructable from the knowledge of its signature.

The Main Question

By using the triangle inequality,

$$
\begin{aligned}
& \left\|\int_{0<t_{1}<\cdots<t_{n}<L} d \gamma_{t_{1}} \otimes \cdots \otimes d \gamma_{t_{n}}\right\| \\
& \leqslant \int_{0<t_{1}<\cdots<t_{n}<L}\left|\dot{\gamma}_{t_{1}}\right| \cdots\left|\dot{\gamma}_{t_{n}}\right| d t_{1} \cdots d t_{n} \\
& =\int_{0<t_{1}<\cdots<t_{n}<L} d t_{1} \cdots d t_{n} \\
& =\frac{L^{n}}{n!} .
\end{aligned}
$$

The Main Question

By rearrangement,

$$
\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n} \leqslant L \quad \forall n \geqslant 1
$$

If the path is tree-reduced, the above inequality (surprisingly!) becomes asymptotically sharp as $n \rightarrow \infty$.

Conjecture (Hambly-Lyons 2010, Chang-Lyons-Ni 2018)

For any tree-reduced BV path γ,

$$
\text { Length }(\gamma)=\lim _{n \rightarrow \infty}\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n}
$$

Path Developments

General philosophy: By lifting a path/stochastic process onto a suitably chosen Lie group and looking at how the lifted object acts on a well chosen space (representation theory), one can detect quantitative properties of the original path/process.

Path Developments

Let G be a Lie group with Lie algebra \mathfrak{g}. Let W be a finite dimensional vector space.

- G acts on W if there is a continuous map $\pi: G \rightarrow \operatorname{Aut}(W)$ such that

$$
\pi(g h) w=\pi(g) \pi(h) w \quad \forall g, h \in G, w \in W
$$

- π is called a representation of G over W.
- A representation of the Lie algebra \mathfrak{g} over W is a Lie algebra homomorphism $\rho: \mathfrak{g} \rightarrow \operatorname{End}(W):$

$$
\rho([X, Y]) w=[\rho(X), \rho(Y)] w \quad \forall X, Y \in \mathfrak{g}, w \in W
$$

Path Developments

- A group representation $\pi: G \rightarrow \operatorname{Aut}(W)$ induces a Lie algebra representation $d \pi: \mathfrak{g} \rightarrow \operatorname{End}(W)$:

$$
\left.X \cdot w \triangleq \frac{d}{d t}\right|_{t=0}(\exp t X) \cdot w, \quad X \in \mathfrak{g}, w \in W
$$

- Conversely, if G is simply connected, then any representation of \mathfrak{g} induces a representation of G (Lie's theorem).

Representation theory:

- Study Lie groups and Lie algebras by representing their elements as linear transformations over vector spaces.

Path Developments

Let \mathbf{X}_{t} be a geometric rough path over \mathbb{R}^{d}. Let G be a Lie group with Lie algebra g .

- Fix a linear map $F: \mathbb{R}^{d} \rightarrow \mathfrak{g}$.
- The Cartan development of \mathbf{X}_{t} onto G under F is the solution to the following differential equation:

$$
\left\{\begin{array}{l}
d \Gamma_{t}=\Gamma_{t} \cdot F\left(d \mathbf{X}_{t}\right) \\
\Gamma_{0}=e
\end{array}\right.
$$

Path Developments

The signature path of \mathbf{X}_{t} is a particular type of Cartan's development:

- $G=G^{N}\left(\mathbb{R}^{d}\right), \mathfrak{g}=\mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.
- $F: \mathbb{R}^{d} \rightarrow \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$ is the natural embedding.
- The signature differential equation:

$$
d S_{N}(\mathbf{X})_{0, t}=S_{N}(\mathbf{X})_{0, t} \otimes d \mathbf{X}_{t}
$$

General Cartan's development:

$$
\Gamma_{t}=\mathrm{Id}+\sum_{n=1}^{\infty} F^{\otimes n}\left(\int_{0<t_{1}<\cdots<t_{n}<t} d \mathbf{X}_{t_{1}} \otimes \cdots \otimes d \mathbf{X}_{t_{n}}\right)
$$

Let $\pi: G \rightarrow \operatorname{Aut}(W)$ be a representation with a distinguished vector $\xi \in W$.

- The orbit $Y_{t} \triangleq \Gamma_{t} \cdot \xi$ encodes rich information about \mathbf{X}_{t}.

Path Developments

Why do we consider path developments?

- When ranging over a suitable class of Lie groups and their representations, the end point of the Cartan development encodes essentially all information about \mathbf{X}_{t}.
- The Cartan development is defined by a linear ODE.
- Representations of classical groups/Lie algebras are well studied and classified.

The Length Conjecture

Returning to the main signature problem:

- $\gamma:[0, L] \rightarrow \mathbb{R}^{d}$ is a tree-reduced BV path with unit speed parametrisation.
- Equip \mathbb{R}^{d} with the Euclidean norm and $\left(\mathbb{R}^{d}\right)^{\otimes n}$ with the projective tensor norms.
- The ultimate goal:

$$
\text { Length }(\gamma)=\lim _{n \rightarrow \infty}\left(n!\left\|\int_{0<t_{1}<\cdots<t_{n}<L} d \gamma_{t_{1}} \otimes \cdots \otimes d \gamma_{t_{n}}\right\|\right)^{1 / n}
$$

Piecewise Linear / C^{1} Paths: Hyperbolic Development

Theorem (Hambly-Lyons 2010, Lyons-Xu 2015)

Let γ be a tree-reduced BV path with unit speed parametrisation. If γ is either piecewise linear or C^{1}, then

$$
\operatorname{Length}(\gamma)=\lim _{n \rightarrow \infty}\left(n!\left\|\int_{0<t_{1}<\cdots<t_{n}<L} d \gamma_{t_{1}} \otimes \cdots \otimes d \gamma_{t_{n}}\right\|\right)^{1 / n}
$$

Piecewise Linear / C ${ }^{1}$ Paths: Hyperbolic Development

Strategy: Hyperbolic development [Hambly-Lyons 2010].

- G : a group of isometries for the hyperbolic space with constant negative curvature -1 .
The hyperboloid model:

$$
L \triangleq\left\{x \in \mathbb{R}^{d+1}: x_{1}^{2}+\cdots+x_{d}^{2}-x_{d+1}^{2}=-1, x_{d+1}>0\right\}
$$

Piecewise Linear / C^{1} Paths: Hyperbolic Development

The isometry group of L :

$$
G=\left\{M \in \operatorname{Mat}(d+1 ; \mathbb{R}): M J M^{T}=J\right\} \text { where } J \triangleq\left(\begin{array}{cc}
\mathrm{I}_{d} & 0 \\
0 & -1
\end{array}\right)
$$

The group action: acting on the hyperboloid by isometry.
The linear map $F: \mathbb{R}^{d} \rightarrow \mathfrak{g}$:

$$
x \mapsto F(x) \triangleq\left(\begin{array}{cc}
0 & x \\
x^{T} & 0
\end{array}\right), \quad x \in \mathbb{R}^{d} .
$$

The hyperbolic development:

$$
\gamma_{t} \in \mathbb{R}^{d} \mapsto \Gamma_{t} \in G \mapsto X_{t} \triangleq \Gamma_{t} \cdot o \in L
$$

Piecewise Linear / C^{1} Paths: Hyperbolic Development

Define the quantity

$$
\begin{aligned}
\tilde{L} & \triangleq \lim _{n \rightarrow \infty}\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n} \\
& =\sup _{n \geqslant 1}\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n}
\end{aligned}
$$

(Chang-Lyons-Ni, Boedihardjo-G. 2018)

For any $\lambda>0$, let X_{t}^{λ} be the hyperbolic development of $\lambda \cdot \gamma_{t}$.

$$
\begin{aligned}
\cosh d_{\mathrm{hyp}}\left(X_{L}^{\lambda}, o\right) & =\sum_{n=0}^{\infty} \lambda^{2 n} \int_{0<t_{1}<\cdots<t_{2 n}<L}\left\langle d \gamma_{t_{1}}, d \gamma_{t_{2}}\right\rangle \cdots\left\langle d \gamma_{t_{2 n-1}}, d \gamma_{t_{2 n}}\right\rangle \\
& \leqslant \cosh \lambda \tilde{L}
\end{aligned}
$$

It is sufficient to show:

$$
\lambda L-d_{\mathrm{hyp}}\left(X_{L}^{\lambda}, o\right) \leqslant o(\lambda) \text { as } \lambda \rightarrow \infty .
$$

The Piecewise Linear Case: Two Edges

Hyperbolic Space

Lemma (Reversed Triangle Inequality)

The following estimate holds:

$$
a_{1}+a_{2}-b \leqslant \log \frac{2}{1-\cos \theta} .
$$

The Piecewise Linear Case: N Edges

Let $\gamma=v_{1} \sqcup \cdots \sqcup v_{N}$ be a piecewise linear path with N edges and minimal intersection angle θ.

The C^{1} case

Let $\gamma \in C^{1}$ with unit speed parametrisation.

The following estimate holds:

$$
0 \leqslant \lambda L-d_{\mathrm{hyp}}\left(X_{L}^{\lambda}, o\right) \leqslant C \cdot \lambda \cdot \Phi\left(\delta_{\dot{\gamma}}(1 / \lambda)\right) \quad \forall \lambda>0 .
$$

where $\delta_{\dot{\gamma}}(\cdot)$ is the modulus of continuity of $\dot{\gamma}$ and $\Phi(0)=0$.

Towards the General BV Case

Let $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a BV path parametrised at unit speed.

- Express γ_{t} as

$$
\gamma_{t}=\left(x_{t}, y_{t}\right):\left\{\begin{array}{l}
x_{t}=x_{0}+\int_{0}^{t} \cos \beta_{s} d s \\
y_{t}=y_{0}+\int_{0}^{t} \sin \beta_{s} d s
\end{array}\right.
$$

- The angular path β_{t} is a measurable function.

Towards the General BV Case

A tree-reduced type assumption:

- We say that γ is strongly tree-reduced if at each point t there is a neighbourhood U_{t} such that β_{s} takes values within some interval of length $<\pi$ a.e. $s \in U_{t}$.

Theorem (Boedihardjo-G. 2020)

Let $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be strongly tree-reduced. Then

$$
\text { Length }(\gamma)=\lim _{n \rightarrow \infty}\left(n!\left\|\int_{0<t_{1}<\cdots<t_{n}<L} d \gamma_{t_{1}} \otimes \cdots \otimes d \gamma_{t_{n}}\right\|\right)^{1 / n} .
$$

Towards the General BV Case

Main strategy:

- Develop γ onto the special linear group $\mathrm{SL}_{2}(\mathbb{R})$.
- Under the canonical linear action, the quantity

$$
\tilde{L}=\lim _{n \rightarrow \infty}\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n}
$$

is controlled from below by the associated angle dynamics.

- Analyse the angle dynamics at a microscopic level.

Main difficulty: The parameters of the equations are only measurable functions.

Main benefit of $\mathrm{SL}_{2}(\mathbb{R})$: Under the canonical linear action, one obtains a decoupled ODE system in polar coordinates.

Limitation: The argument relies on monotonicity properties crucially.

$\mathrm{SL}_{2}(\mathbb{R})$ and its Lie Algebra

The Lie group:

$$
\mathrm{SL}_{2}(\mathbb{R}) \triangleq\{A \in \operatorname{Mat}(2 ; \mathbb{R}): \operatorname{det}(A)=1\}
$$

The Lie algebra of $\mathrm{SL}_{2}(\mathbb{R})$:

$$
\mathfrak{s l}_{2}(\mathbb{R}) \triangleq\{A \in \operatorname{Mat}(2 ; \mathbb{R}): \operatorname{Tr}(A)=0\}
$$

- A natural Lorentzian metric on $\mathfrak{s l}_{2}(\mathbb{R})$:

$$
\langle A, B\rangle \triangleq \frac{1}{2} \operatorname{Tr}(A B), \quad A, B \in \mathfrak{s l}_{2}(\mathbb{R}) .
$$

- An element $A \in \mathfrak{s l}_{2}(\mathbb{R})$ is hyperbolic/elliptic/parabolic if $\langle A, A\rangle$ is positive/negative/zero.
- A canonical ONB of $\mathfrak{s I}_{2}(\mathbb{R})$:

$$
E_{1} \triangleq\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E_{2} \triangleq\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad E_{3} \triangleq\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

$\mathrm{SL}_{2}(\mathbb{R})$ and its Lie Algebra

The $\mathrm{SL}_{2}(\mathbb{R})$-development

We choose:

- $F: \mathbb{R}^{2} \rightarrow \mathfrak{s l}_{2}(\mathbb{R}), F\left(e_{i}\right) \triangleq E_{i}(i=1,2):$

$$
(x, y) \mapsto\left(\begin{array}{cc}
x & y \\
y & -x
\end{array}\right) .
$$

- The group action is the standard linear transformation over \mathbb{R}^{2}.

For each $\lambda>0$, define Γ_{t}^{λ} to be the Cartan development of $\lambda \cdot \gamma$ under F.

An intermediate lower estimate:

$$
\tilde{L} \triangleq \lim _{n \rightarrow \infty}\left(n!\left\|\pi_{n}(S(\gamma))\right\|\right)^{1 / n} \geqslant \sup _{\xi \in S^{1}} \varlimsup_{l \rightarrow \infty} \frac{\log \left|\Gamma_{L}^{\lambda} \cdot \xi\right|_{\mathbb{R}^{2}}}{\lambda}
$$

The $\mathrm{SL}_{2}(\mathbb{R})$-development

Fix $\xi \in S^{1}$.
We can think of $\Gamma_{L}^{\lambda} \cdot \xi$ as the endpoint of the dynamics:

$$
w_{t}^{\lambda} \triangleq \Gamma_{L-t, L}^{\lambda} \cdot \xi, \quad t \in[0, L]
$$

where $\Gamma_{u, v}^{\lambda}$ denotes the Cartan development of $\left.\lambda \cdot \gamma\right|_{[u, v]}$.

- The polar coordinates of $w_{t}^{\lambda}=\rho_{t}^{\lambda} e^{i \phi_{t}^{\lambda}}$ satisfies:

$$
\left\{\begin{aligned}
\dot{\rho}_{t}^{\lambda} & =\lambda \rho_{t}^{\lambda} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right), \\
\dot{\phi}_{t}^{\lambda} & =\lambda \sin \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right)
\end{aligned} \quad\left(\alpha_{t} \triangleq \beta_{L-t}\right)\right.
$$

Analysis of the Angle Dynamics

The angle dynamics:

$$
\dot{\phi}_{t}^{\lambda}=\lambda \sin \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) .
$$

The radial dynamics:

$$
\rho_{t}^{\lambda}=\exp \left(\lambda \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t\right)
$$

The previous intermediate lower estimate implies:

$$
\tilde{L} \geqslant \varlimsup_{\lambda \rightarrow \infty} \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t
$$

The core ingredient:

- When λ is large, $2 \phi_{t}^{\lambda}$ and α_{t} are sufficiently close for most of the time.
- Main challenge: α_{t} is only a measurable function.

The Angle Dynamics: $\dot{\phi}_{t}^{\lambda}=\lambda \sin \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right)$

Lemma

Let $I \triangleq[a, a+\pi]$. Suppose that $\alpha_{t} \in I$ for all $t \in[0, L]$. Then

$$
2 \phi_{0}^{\lambda} \in I \Longrightarrow 2 \phi_{t}^{\lambda} \in I \quad \forall t \in[0, L]
$$

Heuristics: If

- $\alpha_{t} \operatorname{good}+2 \phi_{0}^{\lambda} \operatorname{good} \Longrightarrow 2 \phi_{t}^{\lambda}$ good.

The Angle Dynamics: $\dot{\phi}_{t}^{\lambda}=\lambda \sin \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right)$

Lemma

Let $[a, b]$ be an interval of length $<\pi$. Then

$$
2 \phi_{0}^{\lambda} \in[a, b] \Longrightarrow 2 \phi_{t}^{\lambda} \in[a-r, b+r] \quad \forall t \in[0, L],
$$

where $r \triangleq 2 \lambda \mu\left\{t: \alpha_{t} \notin[a, b]\right\}$ and μ denotes the Lebesgue measure.

Heuristics: If

- α_{t} remains in $[a, b]$ for most of the time
- and $2 \phi_{0}^{\lambda} \in[a, b]$,
then $2 \phi_{t}^{\lambda}$ does not deviate too much from $[a, b]$.

The Angle Dynamics: $\dot{\phi}_{t}^{\lambda}=\lambda \sin \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right)$
Let $[c-\varepsilon, d+\varepsilon] \subseteq(a, b)$ where $b-a<\pi$. Define

$$
\tau \triangleq \inf \left\{t: 2 \phi_{t}^{\lambda} \in[c-\varepsilon, d+\varepsilon]\right\}
$$

Lemma

Suppose that $2 \phi_{0}^{\lambda} \in(a, b) \backslash[c-\varepsilon, d+\varepsilon]$. Then

$$
\tau \leqslant \frac{b-a}{2 \lambda \sin \varepsilon}+\frac{1+\sin \varepsilon}{\sin \varepsilon} \mu\left(B^{c}\right)
$$

where $B \triangleq\left\{t: \alpha_{t} \in[c, d]\right\}$.

Main Steps for Proving the Main Theorem

By Lusin's theorem, there exists a compact subset $F \subseteq[0, L]$, such that

- $\mu\left(F^{c}\right)<\eta$;
- there exists $\rho>0$ such that

$$
s, t \in F,|t-s|<\rho \Longrightarrow\left|\alpha_{t}-\alpha_{s}\right|<\varepsilon .
$$

Partition [0, L] into sub-intervals

$$
[0, L]=\cup_{i=1}^{n} I_{i}^{n}, \quad\left|I_{i}^{n}\right|<\rho .
$$

Main Steps for Proving the Main Theorem

Over each sub-interval I_{i}^{n}, we define:

$$
\alpha_{i}^{n} \triangleq \inf \left\{\alpha_{t}: t \in F \cap I_{i}^{n}\right\}, \beta_{i}^{n} \triangleq \sup \left\{\alpha_{t}: t \in F \cap I_{i}^{n}\right\} .
$$

- $\left[\alpha_{i}^{n}, \beta_{i}^{n}\right]$ is the effective range of α on I_{i}^{n}.

Main steps of the proof:

1. The time it takes $2 \phi_{t}^{\lambda}\left(t \in I_{i}^{n}\right)$ to enter the "good region" [$\alpha_{i}^{n}-\varepsilon, \beta_{i}^{n}+\varepsilon$] adds up (over i) to a negligible quantity.
2. Once $2 \phi_{t}^{\lambda} \in\left[\alpha_{i}^{n}-\varepsilon, \beta_{i}^{n}+\varepsilon\right]$ at some $t^{*} \in I_{i}^{n}$, the portion $\left[t^{*}, t_{i}^{n}\right]$ provides a main contribution in the key lower estimate of \tilde{L}.

Main Steps for Proving the Main Theorem

Recall:

$$
\tilde{L} \geqslant \varlimsup_{\lambda \rightarrow \infty} \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t
$$

We shall write

$$
\begin{aligned}
& \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t \\
& =\int_{\{\text {times before entering good regions }\}} \\
& +\int_{\{\text {times when staying in good regions }\}}
\end{aligned} \text { (Negligible) } \quad \text { (Main Contribution) }
$$

Main Steps for Proving the Main Theorem

$$
\begin{aligned}
& \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t \\
& \geqslant \cos \left(2 \varepsilon+\frac{2 M \eta}{\varepsilon \sin \varepsilon}\right)(L-\delta-\eta)-\delta-\eta-\frac{\pi \varepsilon}{2}-\frac{L}{M}-\frac{(1+\sin \varepsilon) \eta}{\sin \varepsilon} \\
& \quad-\frac{L}{M} \cos \left(2 \varepsilon+\frac{2 M \eta}{\varepsilon \sin \varepsilon}\right)-\cos \left(2 \varepsilon+\frac{2 M \eta}{\varepsilon \sin \varepsilon}\right) \cdot\left(\frac{\pi \varepsilon}{2}+\frac{(1+\sin \varepsilon) \eta}{\sin \varepsilon}\right)
\end{aligned}
$$

and pass to the limit strictly in the following order:

$$
\lambda \rightarrow \infty, \quad \eta \rightarrow 0, \quad M \rightarrow \infty, \quad \varepsilon \rightarrow 0, \quad \delta \rightarrow 0!
$$

$$
\Longrightarrow \tilde{L} \geqslant \varlimsup_{\lambda \rightarrow \infty} \int_{0}^{L} \cos \left(\alpha_{t}-2 \phi_{t}^{\lambda}\right) d t \geqslant L .
$$

Extensions

The argument extends to deal with paths with cusp singularities:

The Rough Path Situation

Let \mathbf{X}_{t} be a geometric rough path with roughness p.

- Lyons' extension theorem:

$$
\left\|\pi_{n}(S(\mathbf{X}))\right\| \leqslant \frac{\omega(\mathbf{X})^{n / p}}{(n / p)!} \quad \forall n \geqslant 1 .
$$

Question: What does the quantity

$$
\varlimsup_{n \rightarrow \infty}\left((n / p)!\left\|\pi_{n}(S(\mathbf{X}))\right\|\right)^{p / n}
$$

recover?
Conjectural answer: some sort of local p-variation of \mathbf{X}.

The Rough Path Situation

Theorem (Boedihardjo-G.-Souris 2020)

For each m, there exists a constant $C_{m} \in(0,1)$ such that

$$
C_{m}\|\mathbf{X}\|_{\text {local-m-var }} \leqslant \varlimsup_{n \rightarrow \infty}\left((n / m)!\left\|\pi_{n}(S(\mathbf{X}))\right\|\right)^{m / n} \leqslant\|\mathbf{X}\|_{\text {local-m-var }}
$$

for all $\mathbf{X}_{t}=\exp (t l)$ where l is an arbitrary Lie polynomial of degree m. If $m=2,3$, we have $C_{m}=1$.

Main idea of the proof:

- Develop the path onto semisimple Lie groups.
- The lower bound is reduced to the study of spectral properties of l under the action $\rho: \mathfrak{g} \rightarrow \operatorname{End}(W)$.
- This can be studied effectively by using the representation theory of semisimple Lie algebras.

Open Questions

1. Can we extend the analysis to higher dimensions?
2. How far is it towards a complete proof (or counterexample) of the length conjecture?
3. How about the rough path situation?
4. Can we apply the idea of path developments to the study of other signature inversion properties?

References

1. B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded variation. and the reduced path group, Annals of Mathematics 171 (1) (2010): 109-167.
2. T. Lyons and W. Xu, Hyperbolic development and the inversion of signature, Journal of Functional Analysis 272 (7) (2015): 2933-2955.
3. H. Boedihardjo, X. Geng and N.P. Souris, Path developments and tail asymptotics of signature for pure rough paths, Advances in Mathematics 364 (2020).
4. H. Boedihardjo and X . Geng, $\mathrm{SL}_{2}(\mathbb{R})$-developments and signature asymptotics for planar paths with bounded variation, arXiv preprint, 2020.
