
Regularity structures and machine learning

Ilya Chevyrev

(Joint work with Andris Gerasimovičs & Hendrik Weber)
arXiv:2108.05879

The University of Edinburgh

13 January 2022

DataSig Seminar

https://arxiv.org/abs/2108.05879

Overview

1 Background - signatures

2 Higher dimensions - regularity structures

3 Numerical experiments

Background - signatures

Machine learning
(Simplistic) picture of machine learning:

data → features → learning algorithm → output

data → features: vectorisation, dimensional reduction, etc.

features → learning algorithm: ‘black box’

learning algorithm → output: e.g. response vector, classification
label, etc.

Focus: data → features for data defined on spatial domains D ⊂ Rd

ξ : D → Rn .

Motivating problem (supervised learning)
From observed samples, ‘learn’ solution to Lu = µ(u) + σ(u)ξ .

Naive approach

Discretize D to {xi}N
i=1 ⊂ D and use {ξ(xi)}N

i=1 as a feature vector.

Problems:

Often needs N very large to be descriptive.
▶ Huge computational cost.

Can be unstable to noise.

Don’t have access to {ξ(x)}x∈D, only some ‘observed points’.
▶ discretisations need to know about ‘observed points’,
▶ ’observed points’ may vary sample to sample ⇒ feature vectors

{ξ(xi)}N
i=1 have different dimensions and not directly comparable.

One-dimensional case - signature
Definition
Consider a (piecewise smooth) X = (X 1 . . . , Xn) : [0, T] → Rn. The
signature of X is the family of numbers

(S(X)i1,...,ik)k≥0, 1≤i1,...,ik≤n

where
S(X)i1,...ik =

∫ T

0

∫ tk

0
. . .

∫ t2

0
dX i1

t1 . . . dX ik−1
tk−1 dX ik

tk .

Chen, Ree, Magnus 50’s, Brockett, Sussmann, Fliess 70’s+, Lyons ‘90’s+
Properties:

expansions of ODEs dY = σ(Y) dX ,
geometric description of X ,
algebraic properties: generalises polynomials (shuffle product) ⇒ ‘universal’
feature set,
stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:

Financial times-series.

Text: “The quick brown fox jumped over the lazy dog.”

Time-evolving network.

Grandjean 2014 Les Cahiers du Numérique

Example applications
Signatures have been

combined with convolutional neural nets to win first prize in ICDAR
2013 Online Isolated Chinese Character recognition competition.1

combined with gradient boosting regression to win first prize in
PhysioNet 2019 Computing in Cardiology Challenge.2

implemented in Python libraries (on GitHub): iisignature
(Graham–Reizenstein), Signatory & ESig (Kidger, Lyons et al.).
applied to gesture recognition, financial data analysis, neural
networks, topological data analysis, hypothesis testing, ...

For a ‘primer’, see C.–Kormilitzin ‘16.3

1Benjamin Graham. “Sparse arrays of signatures for online character recognition”.
arXiv e-prints, arXiv:1308.0371 (2013).

2J. Morrill et al. “The Signature-Based Model for Early Detection of Sepsis From
Electronic Health Records in the Intensive Care Unit”. 2019 Computing in Cardiology
(CinC). 2019.

3Ilya Chevyrev and Andrey Kormilitzin. “A Primer on the Signature Method in
Machine Learning”. arXiv e-prints, arXiv:1603.03788 (2016).

However, signatures not directly applicable to spatial data:

Image recognition.

RSSCN7 dataset [Zou et al. 2015]

Meteorological data.

ECMWF 2011

Higher dimensions - regularity structures

How to generalise signatures to higher dimensions?

Rough paths generalise to regularity structures.
Basic objects in regularity structures are models.

Definition (Model)
Consider D ⊂ Rd and linear operator I mapping space of functions
{u : D → R} to itself.

Consider further an input ({ui}ℓ
i=1, ξ) of functions ξ, ui : D → R.

The model feature vector is the family of functions ∪n≥0Mn

M0 = {ui}ℓ
i=1 (initialising set) ,

Mn =
{

I
[
ξj

k∏
i=1

∂ai fi
]

: fi ∈ Mn−1 , ai ∈ Nd , j , k ∈ N
}

∪ Mn−1 .

Think: each f ∈ M is indexed by corresponding symbol (tree).

Motivation

Example (Signature)
Let X : [0, T] → R and ξ := Ẋ . Define I[ξ]t =

∫ t
0 ξs ds.

Starting with M0 = ∅, functions in M evaluated at T encode the
signature of X .
▶ (Works also for X : [0, T] → Rn.)

Example (PDEs)
Suppose we want to approximate the solution u : D → R to

Lu = µ(u, ∇u) + σ(u, ∇u)ξ , u
∣∣
∂D = u0 ,

L is a differential operator, µ, σ are (smooth/analytic) functions,
(ξ, u0) is the input.
▶ (More boundary conditions could be necessary.)

Example (PDEs cont.)
Picard’s theorem: u = limn→∞ un where u0 = Ic [u0] and

un+1 = Ic [u0] + I[µ(un)] + I[σ(un)ξ] , and{
LI[f] = f , I[f]

∣∣
∂D = 0 ,

{
LIc [g] = 0 , Ic [g]

∣∣
∂D = g ,

Taylor expanding µ, σ to levels p, q, we get an approximation of un+1:

un+1,p,q = Ic [u0] +
p∑

k=0

µ(k)(0)
k! I[(un,p,q)k] +

q∑
k=0

σ(k)(0)
k! I[(un,p,q)kξ] .

un,p,q are part of model M built from M0 = {Ic [u0]} and ξ.

As p, q → ∞, we expect un,p,q → un; as n → ∞, we expect un → u.

⇒ for every x ∈ D, linear combinations of {f (x)}f ∈M should
well-approximate u(x).

Numerical experiments

Parabolic PDE with forcing
For input ξ : [0, 1] × [0, 1] → R, consider

(∂t − ∂2
x)u = 3u − u3 + u ξ on [0, 1] × [0, 1],

u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = x(1 − x) .

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Method:
Sample 1000 realisations of ξ as white noise.
Train/test split: 700/300. On training set, solve the PDE numerically.
On train and test sets, compute the models {f }f ∈M with |M| < 60
functions.
Here: I = (∂t − ∂2

x)−1 and M0 = ∅ (‘forget’ the initial condition)
Fit linear regression of u(t, x) against {f (t, x)}f ∈M from training set.
Apply fit on testing set.

(a) Prediction at (t, x) = (0.05, 0.5).
Relative ℓ2 error: 4.7%. Slope: 1.01.

(b) Prediction at (t, x) = (1, 0.5).
Relative ℓ2 error: 6.9%. Slope: 0.98.

Remark: similar for additive forcing, but prediction worsens far from boundary.

Wave equation with forcing
As before, but for wave equation

(∂2
t − ∂2

x)u = cos(π u) + u2 + u ξ for (t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = u0(x) := sin(2π x),

∂tu(0, x) = v0(x) := x(1 − x) ,

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Now I = (∂2
t − ∂2

x)−1 and include both initial condition and speed in
initialising set, M0 = {Ic [u0], Is [v0]}:


(∂2

t − ∂2
x)Ic [u0] = 0

Ic [u0](0, x) = u0(x) ,

∂t Ic [u0](0, x) = 0 .


(∂2

t − ∂2
x)Is [v0] = 0

Is [v0](0, x) = 0 ,

∂t Is [v0](0, x) = v0(x) .

(a) Prediction at (t, x) = (1, 0.5) for model
with M0 = ∅. Relative ℓ2 error: 84.1%.

(b) Prediction at (t, x) = (1, 0.5) for
model with M0 = {Ic [u0], Is [v0]}. Relative
ℓ2 error: 1.8%.

Burgers’ equation

Final experiment: learn entire solution {u(t, x)}(t,x)∈[0,10]×[−8,8] of

(∂t − 0.1∂2
x)u = −u∂xu (t, x) ∈ [0, 10] × [−8, 8]

u(t, −8) = u(t, 8) (Periodic BC) ,

u0(x) =
10∑

k=−10

ak
1 + |k|2

sin
(
λ−1πkx

)
Input: initial condition u0 — (ak)k=−10,...,10 i.i.d. standard normal,
λ = 2, 4, 8 uniformly.

Train/test split: 100/20. On training set, solve PDE numerically.

Burgers’ equation

No forcing ⇒ learn dynamical system: find functions
a, b : [−8, 8] → R such that, for some δ > 0 and all k = 0, . . . , 10/δ,

u((k + 1)δ, ·) ≈ a(·) +
∑

f ∈M
bf (·)f (δ, ·) ,

where M is model as in heat equation but on [0, δ] × [−8, 8] and with
ξ ≡ 0 and initialising set M0 = {Ic [u(kδ, ·)]}.

We divide [0, 10] into 200 intervals of length δ = 0.05.

On training set, fit a linear regression for functions a(x), bf (x) at
each x ∈ [−8, 8] (constant in time!)

⇒ training set size effectively increases 100⇝ 200 × 100.

Result: ℓ2 error average: 3.04%, range: ≈ 0% to 11.4% (over 10
experiment repeats).

Heat-maps for true and predicted solutions from four test cases.

(a) Relative ℓ2 error: 0.6%. (b) Relative ℓ2 error: 1.4%.

(c) Relative ℓ2 error: 2.4%. (d) Relative ℓ2 error: 7.9%.

Remarks – Burgers’ equation experiment

Predictive power stable under noisy observations.

The viscosity ν = 0.1 in PDE can be estimated.

Benchmarked against two other methods:
▶ Naive Euler regression algorithm: much less predictive power
▶ An adaptation of PDE-FIND algorithm4 to learn coefficients of PDE:

almost as good on original data, but much worse on noisy data.

4Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.
Science Advances 3.4 (2017), e1602614.

Further directions

Applications beyond PDEs? Possible domains:
▶ meteorological data,
▶ image and remote sensing recognition,
▶ fluid dynamics.

Universality properties?

How to choose ‘hyperparameter’ I? Can it be learnt?

Combine with other learning algorithms (neural networks, random
forests, etc.)? Kernelisation?

Thank you!

	Background - signatures
	Higher dimensions - regularity structures
	Numerical experiments

