Regularity structures and machine learning

Ilya Chevyrev

(Joint work with Andris Gerasimovičs & Hendrik Weber) arXiv:2108.05879

The University of Edinburgh

13 January 2022

DataSig Seminar

Overview

2 Higher dimensions - regularity structures

Background - signatures

Machine learning

(Simplistic) picture of machine learning:

data \rightarrow features \rightarrow learning algorithm \rightarrow output

- data \rightarrow features: vectorisation, dimensional reduction, etc.
- features \rightarrow learning algorithm: 'black box'
- \bullet learning algorithm \rightarrow output: e.g. response vector, classification label, etc.

Focus: data \rightarrow features for data defined on *spatial domains* $D \subset \mathbb{R}^d$

$$\xi\colon D\to\mathbb{R}^n$$
.

Motivating problem (supervised learning)

From observed samples, 'learn' solution to $\mathcal{L}u = \mu(u) + \sigma(u)\xi$.

Naive approach

Discretize D to $\{x_i\}_{i=1}^N \subset D$ and use $\{\xi(x_i)\}_{i=1}^N$ as a feature vector.

Problems:

- Often needs N very large to be descriptive.
 - Huge computational cost.
- Can be unstable to noise.
- Don't have access to $\{\xi(x)\}_{x\in D}$, only some 'observed points'.
 - discretisations need to know about 'observed points',
 - 'observed points' may vary sample to sample \Rightarrow feature vectors $\{\xi(x_i)\}_{i=1}^N$ have different dimensions and not directly comparable.

One-dimensional case - signature

Definition

Consider a (piecewise smooth) $X = (X^1 \dots, X^n) \colon [0, T] \to \mathbb{R}^n$. The *signature* of X is the family of numbers

$$(S(X)^{i_1,...,i_k})_{k\geq 0,\ 1\leq i_1,...,i_k\leq n}$$

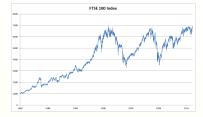
where

$$S(X)^{i_1,\ldots i_k} = \int_0^T \int_0^{t_k} \ldots \int_0^{t_2} \mathrm{d} X_{t_1}^{i_1} \ldots \mathrm{d} X_{t_{k-1}}^{i_{k-1}} \mathrm{d} X_{t_k}^{i_k}$$

Chen, Ree, Magnus 50's, Brockett, Sussmann, Fliess 70's+, Lyons '90's+ **Properties:**

- expansions of ODEs $dY = \sigma(Y) dX$,
- geometric description of X,
- algebraic properties: generalises polynomials (shuffle product) \Rightarrow 'universal' feature set,
- stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:



• Text: "The quick brown fox jumped over the lazy dog."

• Time-evolving network.

Financial times-series.

Grandjean 2014 Les Cahiers du Numérique

Example applications

Signatures have been

- combined with convolutional neural nets to win first prize in ICDAR 2013 Online Isolated Chinese Character recognition competition.¹
- combined with gradient boosting regression to win first prize in PhysioNet 2019 Computing in Cardiology Challenge.²
- implemented in Python libraries (on GitHub): iisignature (Graham–Reizenstein), Signatory & ESig (Kidger, Lyons et al.).
- applied to gesture recognition, financial data analysis, neural networks, topological data analysis, hypothesis testing, ...

For a 'primer', see C.-Kormilitzin '16.³

²J. Morrill et al. "The Signature-Based Model for Early Detection of Sepsis From Electronic Health Records in the Intensive Care Unit". *2019 Computing in Cardiology* (*CinC*). 2019.

³Ilya Chevyrev and Andrey Kormilitzin. "A Primer on the Signature Method in Machine Learning". *arXiv e-prints*, arXiv:1603.03788 (2016).

¹Benjamin Graham. "Sparse arrays of signatures for online character recognition". *arXiv e-prints*, arXiv:1308.0371 (2013).

However, signatures not directly applicable to spatial data:

• Image recognition.

RSSCN7 dataset [Zou et al. 2015]

• Meteorological data.

ECMWF 2011

Higher dimensions - regularity structures

How to generalise signatures to higher dimensions?

- Rough paths generalise to regularity structures.
- Basic objects in regularity structures are models.

Definition (Model)

Consider $D \subset \mathbb{R}^d$ and linear operator I mapping space of functions $\{u \colon D \to \mathbb{R}\}$ to itself.

Consider further an input $(\{u^i\}_{i=1}^{\ell}, \xi)$ of functions $\xi, u^i \colon D \to \mathbb{R}$. The *model feature vector* is the family of functions $\bigcup_{n \ge 0} \mathcal{M}^n$

$$\mathcal{M}^{0} = \{u^{i}\}_{i=1}^{\ell} \quad \text{(initialising set)},$$
$$\mathcal{M}^{n} = \left\{I[\xi^{j}\prod_{i=1}^{k}\partial^{a_{i}}f_{i}] : f_{i} \in \mathcal{M}^{n-1}, a_{i} \in \mathbb{N}^{d}, j, k \in \mathbb{N}\right\} \cup \mathcal{M}^{n-1}.$$

Think: each $f \in \mathcal{M}$ is indexed by corresponding symbol (tree).

Motivation

Example (Signature)

- Let $X: [0, T] \to \mathbb{R}$ and $\xi := \dot{X}$. Define $I[\xi]_t = \int_0^t \xi_s \, \mathrm{d}s$.
- Starting with $\mathcal{M}^0 = \emptyset$, functions in \mathcal{M} evaluated at \mathcal{T} encode the signature of X.
 - (Works also for $X : [0, T] \to \mathbb{R}^n$.)

Example (PDEs)

Suppose we want to approximate the solution $u \colon D \to \mathbb{R}$ to

$$\mathcal{L}u = \mu(u, \nabla u) + \sigma(u, \nabla u)\xi, \qquad u\big|_{\partial D} = u_0,$$

- $\mathcal L$ is a differential operator, μ,σ are (smooth/analytic) functions,
- (ξ, u_0) is the **input**.
 - (More boundary conditions could be necessary.)

Example (PDEs cont.)

Picard's theorem: $u = \lim_{n \to \infty} u^n$ where $u^0 = I_c[u_0]$ and

$$u^{n+1} = I_c[u_0] + I[\mu(u^n)] + I[\sigma(u^n)\xi]$$
, and

$$\left\{ \mathcal{L}I[f] = f, \quad I[f]\big|_{\partial D} = 0, \quad \left\{ \mathcal{L}I_c[g] = 0, \quad I_c[g]\big|_{\partial D} = g, \right.$$

• Taylor expanding μ, σ to levels p, q, we get an approximation of u^{n+1} :

$$u^{n+1,p,q} = I_{c}[u_{0}] + \sum_{k=0}^{p} \frac{\mu^{(k)}(0)}{k!} I[(u^{n,p,q})^{k}] + \sum_{k=0}^{q} \frac{\sigma^{(k)}(0)}{k!} I[(u^{n,p,q})^{k} \xi].$$

- $u^{n,p,q}$ are part of model \mathcal{M} built from $\mathcal{M}^0 = \{I_c[u_0]\}$ and ξ .
- As $p, q \to \infty$, we expect $u^{n,p,q} \to u^n$; as $n \to \infty$, we expect $u^n \to u$.
- \Rightarrow for every $x \in D$, linear combinations of $\{f(x)\}_{f \in \mathcal{M}}$ should well-approximate u(x).

Numerical experiments

Parabolic PDE with forcing

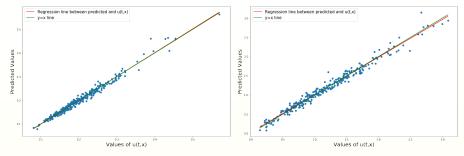
For input $\xi \colon [0,1] imes [0,1] o \mathbb{R}$, consider

$$(\partial_t - \partial_x^2)u = 3u - u^3 + u\xi$$
 on $[0, 1] \times [0, 1]$,
 $u(t, 0) = u(t, 1)$ (Periodic BC),
 $u(0, x) = x(1 - x)$.

Aim: for fixed $(t,x) \in [0,1] \times [0,1]$, learn u(t,x) from ξ by linear regression at against model at (t,x).

Method:

- Sample 1000 realisations of ξ as white noise.
- Train/test split: 700/300. On training set, solve the PDE numerically.
- On train and test sets, compute the models $\{f\}_{f\in\mathcal{M}}$ with $|\mathcal{M}|<60$ functions.
- Here: $I = (\partial_t \partial_x^2)^{-1}$ and $\mathcal{M}^0 = \emptyset$ ('forget' the initial condition)
- Fit linear regression of u(t,x) against $\{f(t,x)\}_{f\in\mathcal{M}}$ from training set.
- Apply fit on testing set.



(a) Prediction at (t, x) = (0.05, 0.5). Relative ℓ^2 error: 4.7%. Slope: 1.01.

(b) Prediction at (t, x) = (1, 0.5). Relative ℓ^2 error: 6.9%. Slope: 0.98.

	(t, x) = (0.05, 0.5)		(t, x) = (0.5, 0.5)		(t, x) = (1, 0.5)		(t, x) = (1, 0.95)	
Model's Height	Error	Slope	Error	Slope	Error	Slope	Error	Slope
1	8.83%	0.91	21.14%	0.85	22.81%	0.72	22.95%	0.75
2	5.60%	0.96	9.79%	0.97	13.42%	0.91	13.16%	0.91
3	5.15%	0.97	8.15%	0.98	7.90%	0.97	8.69%	0.96
4	4.88%	0.97	7.85%	0.98	6.61%	0.98	7.06%	0.98

Remark: similar for additive forcing, but prediction worsens far from boundary.

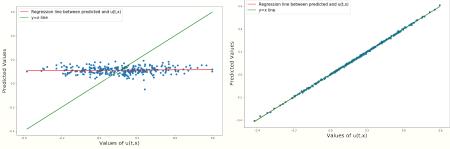
Wave equation with forcing

As before, but for wave equation

$$\begin{aligned} &(\partial_t^2 - \partial_x^2)u = \cos(\pi \, u) + u^2 + u \,\xi \quad \text{for } (t, x) \in [0, 1] \times [0, 1], \\ &u(t, 0) = u(t, 1) \quad (\text{Periodic BC}), \\ &u(0, x) = u_0(x) := \sin(2\pi \, x), \\ &\partial_t u(0, x) = v_0(x) := x(1 - x) \,, \end{aligned}$$

- Aim: for fixed $(t, x) \in [0, 1] \times [0, 1]$, learn u(t, x) from ξ by linear regression at against model at (t, x).
- Now I = (∂²_t − ∂²_x)⁻¹ and include **both** initial condition and speed in initialising set, M⁰ = {I_c[u₀], I_s[v₀]}:

$$\begin{cases} (\partial_t^2 - \partial_x^2) I_c[u_0] &= 0\\ I_c[u_0](0, x) &= u_0(x) ,\\ \partial_t I_c[u_0](0, x) &= 0 . \end{cases} \begin{cases} (\partial_t^2 - \partial_x^2) I_s[v_0] &= 0\\ I_s[v_0](0, x) &= 0 ,\\ \partial_t I_s[v_0](0, x) &= v_0(x) . \end{cases}$$



(a) Prediction at (t, x) = (1, 0.5) for model with $\mathcal{M}^0 = \emptyset$. Relative ℓ^2 error: 84.1%.

(b) Prediction at (t, x) = (1, 0.5) for model with $\mathcal{M}^0 = \{I_c[u_0], I_s[v_0]\}$. Relative ℓ^2 error: 1.8%.

Model's Height	1	2	3	4
With initial speed	60.60%	12.86%	2.09%	1.19%
Without initial speed	60.40%	13.45%	5.39%	4.77%

Burgers' equation

Final experiment: learn *entire* solution $\{u(t,x)\}_{(t,x)\in[0,10]\times[-8,8]}$ of

$$\begin{aligned} (\partial_t - 0.1\partial_x^2)u &= -u\partial_x u \quad (t,x) \in [0,10] \times [-8,8] \\ u(t,-8) &= u(t,8) \quad (\text{Periodic BC}) \,, \\ u_0(x) &= \sum_{k=-10}^{10} \frac{a_k}{1+|k|^2} \sin\left(\lambda^{-1}\pi kx\right) \end{aligned}$$

• Input: initial condition $u_0 - (a_k)_{k=-10,...,10}$ i.i.d. standard normal, $\lambda = 2, 4, 8$ uniformly.

• Train/test split: 100/20. On training set, solve PDE numerically.

Burgers' equation

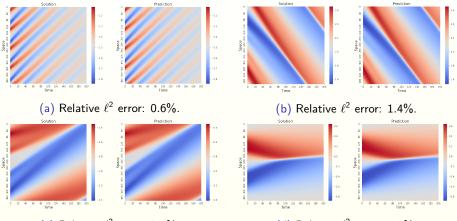
• No forcing \Rightarrow learn dynamical system: find functions $a, b: [-8, 8] \rightarrow \mathbb{R}$ such that, for some $\delta > 0$ and all $k = 0, \dots, 10/\delta$,

$$u((k+1)\delta,\cdot) \approx a(\cdot) + \sum_{f \in \mathcal{M}} b_f(\cdot)f(\delta,\cdot),$$

where \mathcal{M} is model as in heat equation but on $[0, \delta] \times [-8, 8]$ and with $\xi \equiv 0$ and initialising set $\mathcal{M}^0 = \{I_c[u(k\delta, \cdot)]\}.$

- We divide [0, 10] into 200 intervals of length $\delta = 0.05$.
- On training set, fit a linear regression for functions a(x), b_f(x) at each x ∈ [-8, 8] (constant in time!)
- \Rightarrow training set size effectively increases 100 \rightsquigarrow 200 \times 100.
- Result: ℓ^2 error average: 3.04%, range: $\approx 0\%$ to 11.4% (over 10 experiment repeats).

Heat-maps for true and predicted solutions from four test cases.



(c) Relative ℓ^2 error: 2.4%.

(d) Relative ℓ^2 error: 7.9%.

Remarks - Burgers' equation experiment

- Predictive power stable under noisy observations.
- The viscosity $\nu = 0.1$ in PDE can be estimated.
- Benchmarked against two other methods:
 - Naive Euler regression algorithm: much less predictive power
 - An adaptation of PDE-FIND algorithm⁴ to learn coefficients of PDE: almost as good on original data, but much worse on noisy data.

⁴Samuel H Rudy et al. "Data-driven discovery of partial differential equations". *Science Advances* 3.4 (2017), e1602614.

Further directions

• Applications beyond PDEs? Possible domains:

- meteorological data,
- image and remote sensing recognition,
- fluid dynamics.
- Universality properties?
- How to choose 'hyperparameter' I? Can it be learnt?
- Combine with other learning algorithms (neural networks, random forests, etc.)? Kernelisation?

Thank you!