Signatures and Functional Expansi

Bruno Dupire
Head of Quantitative Research

Bloomberg

DataSig Seminar Series
November 314, 2022

Joint work with Valentin Tissot-Daguette (Bloomb

Bloomberg



OUTLINE
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,X) SIGNATURES




ONE DIMENSION + TIME

For the sake of simplicity we consider the one asset case and its price time series. It is

described by (t, x;)

- The signatures are iterated (Stratonovich) integrals with respect to the variables t and x.

- They are described by a word with letters in the alphabet {t, x}

- We denote them as binary strings with the conventiont » 0 and x » 1

For instance the word “txttx” becomes “01001”, which corresponds to the following integral:

T rts rty rtz rto
So1001(X7) = f j f j f odt; odx;, odtsodtyedx;,
o Jo Jo Jo Yo
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(T,X) PATH VS (X1,X2) PATH

X

%

x¢ = x(t)

X2

O

X1 = x1(t)
Xot = Xp(t)
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SHORT WORDS EXAMPLES

01
Assume: x, =0 /\
oT 1 xr
Define: /\ /\
1
t'=T—t 00 %Tz 01 fOTxédt 10 fOTxtdt 1 Ex%
X{ = X7 — X¢
0]0]0) 001 010 011 100 101 110 111
! ! ! 1T , ! ! 1
%T3 fOT tx,dt fOT(t — t)xedt 5[, xi*dt fOTt x dt fOTxtxtdt %fOTxtzdt -x7
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SIGNATURES: GEOMETRIC VISUALISATION

X

N
T+xT

SOO(XT)

So1(X1)

S10(X1) | S11(X7)

v

T T+ xr
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PATH RECONSTRUCTION

X S (

~-

A
Y,

o

o

- We can compute signatures from a path.

- Can we reconstruct the path from the signatures?

Yes, and a subset of words is enough
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RECONSTRUCTION PROPERTY

- Legendre words of length k + 1:

a = (1,0,0,...,0):
k

T T — k-1
Sa(XT):jO xs((k_S)l)! ds

give L? product of path with

polynomials in t

- They are enough to rebuild the path

0

Further details in [V. Tissot-Daguette. “Short communication: Projection of functionals and fast pricing of exotic options”, SIFIN, 2022]
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UNCTIONAL ITO CALCULUS




FUNCTIONAL ITO CALCULUS

Paper available at: https://papers.ssrn.com/sol3/Papers.cfim?abstract id=1435551

- Calculus for functions of the path so far, not only functions of the current value
- Proper definition of Greeks for path dependent options

- Functional 1t6 formula gives I'/© trade-off for path-dependent options

Bloomberg
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https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=1435551

RESULTS AND APPLICATIONS

- Functional versions of I1t6 formula, Feynman-Kacs and BS PDE
- Super-replication (refinement of Kramkov decomposition)

- Lie Bracket of price and time functional derivatives

- Characterisation of attainable claims

- Decomposition of volatility risk
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REVIEW OF ITO CALCULUS
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PATH SPACES

A; = {cadlag paths over [0, t]} A= A

— e

X, ={X(s),s€[0,t]}eA; x,=X(s)ER
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FUNCTIONALS, T-FUNCTIONALS

T-functional;
g: Ay » R
X7~ g(Xr)

A T-functional can be seen as a random variable in the Wiener space, or as a
payoff of an exotic (path dependent) option.

Functional:
fi AR
Xt P f(Xy)

An example of a functional is the price of an exotic option, knowing X; (the
underlying price path) so far: f(X,) = EQ[g(Y7)|X¢]
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EXAMPLE OF A FUNCTIONAL
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f on two paths
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FUNCTIONAL DERIVATIVES

Two Operators:

h 8t
Bump Flat extension

Space derivative
" FXP) = F(X) f(/v\/f/\' ) - f (/wf/\")

A f(Xp) = Li_l}{l) - = }li_r)lg)

Time derivative

) sy HnT) - ()

Acf(Xe) = blg—>0+ ot S5t—=0"
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EXAMPLES

t
f Xt f xsds
0

(Xt

/\/vf/\' Ay f 1 0

2(x¢ = x¢-)

/\_/\/J‘A Acf 0 Xt

- fX) = h(t,x) = Af = dch, Af = 0;h

- fX) = [ xsds = 0=Dpf # Ayf=1

Bloomberg
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PATHWISE ITO & STRATONOVICH FORMULA

- Follmer’s approach: Given sequence of refining partitions IT = (I1")y » ; of [0, T]

- lfxeqQl= {continuous, x)," = Jim Yo e (Xegne = Xty At)z exists & finite}, then

- Functional Ité formula (f € C1?)
FOX) = £(Ko) + fy Acf (X)ds + [ Af (Xs)dixs + 5 J A f (Xs)d(20)s

- Functional Stratonovich formula (f € C*?)

t t

FX) = F(Xo) + fo Af (Xs)ds + fo ALf(X,) o dx,

Bloomberg
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PATHWISE STRATONOVICH INTEGRATION

Goal: define foth(Xs) odx, forall h € C'* and X € Q!

Spatial anti-derivative: H(X,) = [ *h(X; ) de
AH = h

AH(X,) = ffof Ach(XE ) de

Functional Stratonovich formula (rearranged):

t t
j R(XS) o dxs = H(X,) — j AH(X,) ds
0 0

If h = S, = one can define S,; in a pathwise manner (in fact, S = (S,) entirely)

Bloomberg

21



FUNCTIONAL DERIVATIVES OF INTEGRALS

f [hoxoas  [horodx, [ horeds,
0 0 0]
Integral type Riemann 1t6 Stratonovich
Acf h(X:) 0 0
A f 0 h(X:-) 1069
Axxf 0 0 Axh(Xt)

Bloomberg
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FUNCTIONAL DERIVATIVES OF SIGNATURES

- Recallthat Agf = A f, Af =A,f

- Recursion /\

BoSao = Sar DSap =0 N S

11

00 01 10
DNgSer =0, AS, =S, A /\ /’\A1 A

000 001 010 011 100 101 110 111

= A,S, # 0ifand only if a = fy. If so, then A, S, = S

In particular, A, S, (Xo) =6,4
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SIGNATURE SPANNING




SPACE SPANNED BY ORDER K SIGNATURES

- Foragiven T, define:

Ak, the space spanned by 2X*1 — 1 signatures from words of order < K
(linearly dependent, e.g. Sop; = TS; — S10)

By, the space spanned by 2X signatures from words of order = K

- Then
AK - BK

- The 2K words of length K are linearly independent and form a basis of By, hence of
Ag. However, it's beneficial to have a incremental basis when increasing the order.
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INCREMENTAL BASIS

Incremental basis: at step K + 1 add 2X words of the 2K+ words of length K + 1
There are many (but not all) ways to do it.

Favored choice: at each step take the words that end with 1 (plus @ word).
(@)
(1)
(0,1),(1,1)
(0,0,1),(0,1,1),(1,0,1),(1,1,1)

It provides an interpretation as dynamic stock trading (up to 1t6 / Stratonovich).

Bloomberg
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INCREMENTAL BASIS

Words that start with 1 (plus @ word):

@
T
TN N
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INCREMENTAL BASIS

Words that end with 1 (plus @ word):

0)

/\

0 1

00/\01 10/\1\1
N N N

000 ‘001, 010 ‘011, 100 ‘101, 110 ‘111
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INDEPENDENT SIGNATURES

- When considering paths of all lengths (not a fixed T), then all

signatures are linearly independent
= Proof: If f(X;) = Xja)<k Ca Sa(X:) =0, then 0 = A, f(Xo) = ¢, ©

- The space generated by signatures of order up to K is of

dimension 2K+1 — 1

Bloomberg
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CLASSIFICATION OF EXPANSIONS

Classical Static (around a path) Dynamic (after a path)

S T

Bloomberg

31



TAYLOR AS ITERATED INTEGRALS

Usual 1D case: Applying iteratively the fundamental theorem of calculus:

FG) = £(0) + j () dy
0

y

F1O) = £1(0) + j F(2)dz
0

F1(2) =

leads to the Taylor expansion

(x— 2)"

F@ =0+ Y OO+ [ s
k=1

k
The term % comes from the iterated integral fox fox" foxz dxq ...dxs_1dx;,
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WIENER CHAOS EXPANSION

Price functional: f(X,) = EQ[g(Yp)|X,], g:Ar - R

Martingale Representation: g(X;) = IEi)Q[g(YT)] + fOT A, f(Xp)dx;
= ¢o

lterate: A f (X)) = E¢IALf (Y] + [T A E[ALF (V) | X,] dxs , ..
= ¢1(t)

— Wiener Chaos

g(X7) = ¢ + Z j Pi (b1, ..., ty) dx®¥

= Jo<ty<<ty<T

Malliavin calculus: ¢ (ty, ..., t;) = E¢|D, .0, g (Vr)]

Bloomberg
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INTRINSIC VALUE FUNCTIONAL

Given a T-functional g, one can associate a functional f(X;) = g(X;7—), f(Xr) = g(X1)

1y

Properties: (i) Acf (X)) =0 (i) Apf(Xp) = Dt.g(Xt,T—t)

ot ¢ 1
Xt ) &x

= Functional Stratonovich: g(X7) = g(Xor) + fOT Dig(Xer_t) o dx,

Bloomberg 2



INTRINSIC VALUE EXPANSION

Stratonovich: g(X7) = g(Xor) + fOT Dig(Xer—t) o dx;
lterate: Dog(X,r-¢) = Dr 9(Xor) + [, Dseg(Xsr—s) © dxs, ..

= Intrinsic Value Expansion

g(XT) = g(XO,T) + z j Dt1~-tkg(X0,T) ° dx®k
S Jo<ti<<ty<T

Bloomberg
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TAYLOR EXPANSION OF A FUNCTIONAL

; 0 _ 1 _ a — az ... ag
Define Xe; =t X =X, dx® =dx;'oodx)

Aof = Aal,...,aKf =g, (Aaz ( (AO—’Kf))>
Forinstance, Ay, f = 4o(4:f) = 4.(4,.f)

By induction, one gets the Taylor (Maclaurin) formula:

FXD = D Aaf (X) SalX0) + 1(X))

lax|<K

with the convention Ay f (X,) = f(X,) and

rx (Xe) = Z Aaf(th) odx®

|aT=K f()<t1<---<tK<t

{S,: @ € Words} form a basis of the space of functionals

Bloomberg
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FUNCTIONAL TAYLOR (GENERAL CASE)

Theorem: Let X, € A, Y, € Q' and f € CXX*1, Then,

F DY) = ) Baf(Xe) Sal) + (Ko, Vo)

|a]<K functional path remainder

Sum over words of product of 2 terms

- K functional derivative at 0 (depending only on the functional, not on the path)

- K-fold integral of path (signature, depending on the path, not on the functional)
f(X®Y)

Bloomberg
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2 USES

Functional Maclaurin Expansion

FXO = ) Baf (o) SalXe) + i (X,)

|a|<K functional path

1. Option pricing: cubature (expectation)
= Find “good” weighted paths that price the signatures of the short words correctly

2. Hedging: matching the coefficients (pathwise)

= Find a hedge with the same first coefficients

Bloomberg
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SUMMARY

- Wiener Chaos

g(Xr) = ESg(i)] +
k<K

- Intrinsic Value

0

j EQ|Dy,..., g(Yr)] dx®% + €
<t <-<tR<T

g(Xr) = g(XO,T) + z f D¢, ..., 9(Xo1) © dx®* +
0<t,<-<tp<T

k<K

- Functional Taylor

fXe) = f(Xo) +

Aaf (Xo) Sa(Xe) + 11"
|| < K

Bloomberg

39



LINKING INTRINSIC AND FUNCTIONAL EXPANSIONS

IV expansion

g(Xr) = g(Xor) + Z j Dy,..t,9(Xor) © dx®* + 1V

W=t Jo<ti<-<ty<T

Functional expansion

gXr) = g(XO,T) + Z Dof (Xo) Sa(X7) +1£"

lal <K

We infer that

k (t t )Vl
1+1 — U
D, -t,9(Xor) = Z Aaf(Xo)l_[JrT
1=0 r

lali=k

Where y; is the number of 0’s between 2 consecutive 1’s
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FROM FUNCTIONAL EXPANSION TO T-FUNCTIONAL EXPANSION

We have seen the expansion of a functional. What about the expansion of a
T-functional, g(X1)?

- Find a functional f(X;) such that f(X;) = g(Xr) (smooth embedding)
- Expand f: f(X¢) = Xg Baf (Xo) Sa(Xt)

- Evaluate at Xr: g(Xr) = f(X1) = XgBaf (Xo) S¢(X7)

- Rewrite in the incremental basis g(X7) = 1p + X4 A¢ S(a1)(X1)

- The decomposition does not depend on the choice of f

Bloomberg 4
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EUROPEAN AND EXOTIC OPTIONS

- European options are spanned by the words (1,1..,1)

X7
5(1,...,1)k (XT) — F

It gives the moments of x.

- Exotic options are spanned by all the words

lterated integrals S, (X;) are the building blocks of path dependence.

Bloomberg
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EUROPEAN OPTION EXAMPLE

0.6
—— Call Payoff
05 Polynomial Approx /
/

Approximation of a T-maturity

European call by a linear
combination of T-signature payoffs

Payoff at T: (xT _ x0)+ 0.4 0.6 0.8 1;1 12 1.4 16

01
S1(X7) = xr
— 2
S11(Xr) = x7 o1
k
Sl...l(XT) — % oo 0011 oot 1001
N '

00001 00011 00101 01001 10001 00111 01011 01101

Approx of Call Payoff by 5-th deg Polynomial vanilla Call with T=1.00 and K=1.00

11

101
111

1011 1101 1111
0111

10011 10101 11001 01111 10111 11011 11101 11111
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FORWARD T1<T EXAMPLE

Approximation of a T;-maturity forward
by a linear combination of T-signature

payoffs, T; < T

Payoff at T

Ty T
Xr, — Xo = j dx; = f H(T; — t)dx;
0 0

5,000 = |

T
1dx;

0

T

So1(X7) =j t dx;

5(1-;31()(7") =
k

0

Ttk

o Fdxt

12 Approx of Step Function by 5-th deg Polynomial

107 N\
\
0.8 5
\
0.6
0.4
0.2
0.0 9[— Exact
Polynomial Approx
-0.2
0.0 0.2 0.4 0.6 0.8 10
01
001 011
0001 0101
0011 1001
00011 00101 10001
00001 01001 00111 01011 01101

Forward with T=0.75 and K=1.00

il

101
111

0111 1011
1101 1111

10101 11001 11011 11101 11111
10011 01111 10111
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FORWARD START EXAMPLE

Approximation of a T; x T, forward-
start call by a linear combination of T-
signature payoffs, T; < T, < T

Payoff at T
(xTz - xT1)+

T +
= <f [H(T, —t) — H(Ty — t)]dxt>
0

111111111111111

11111

Bloomberg
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DEEP HEDGE MADE SIMPLE

Given a set of paths, historical or synthetic, and a
derivative payoff, find the best delta hedge h(X;), as a
functional of X;, the path so far.

® Neural net approach: parameterize h(X,) by a neural
network (LSTM, GRU, ...); train the network by
gradient descent, or

® Signature approach: write h(X,) as a weighted sum of
signatures:

M) = ) RaSa(X0)

Find the weights 1, by multiple regression.

Delta ratio at 9M for 1Y Asian ATM Call, from signature regression

Bloomberg
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CONCLUSION

Signatures are natural building blocks of path-dependent options

- Inthe (¢, x;) case, we show a reconstruction of the path from its signature using Legendre

polynomials

- For continuous paths with finite quadratic variation along a given sequence of partitions, we

establish
- A pathwise functional Taylor expansion

- An expansion for T —functionals based on the intrinsic value
- Comparison with classical Taylor expansion and Wiener chaos

- The functional Taylor expansion decomposes exotic claims. This opens the door to novel

pricing and hedging algorithms
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