Signatures and Functional Expansions

Bruno Dupire

Head of Quantitative Research

Bloomberg

DataSig Seminar Series
November 3rd, 2022

Joint work with Valentin Tissot-Daguette (Bloomberg / Princeton)

OUTLINE

- Signatures
- Functional Itô Calculus
- Expansions of Functionals
 - Wiener Chaos
 - Intrinsic Value
 - Functional Taylor
- Applications
 - Claim Decomposition
 - Hedging with Signature

(t,x) SIGNATURES

ONE DIMENSION + TIME

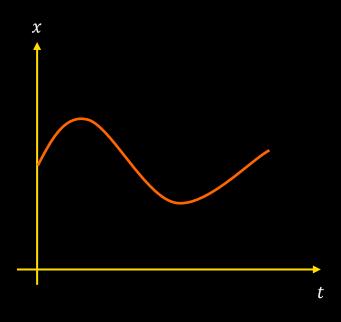
For the sake of simplicity we consider the one asset case and its price time series. It is described by (t, x_t)

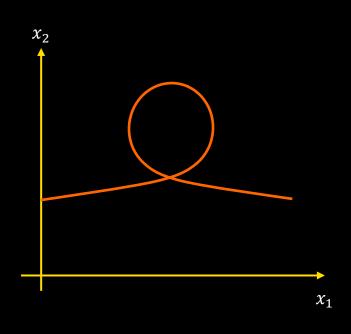
- The signatures are iterated (Stratonovich) integrals with respect to the variables t and x.
- They are described by a word with letters in the alphabet $\{t, x\}$
- We denote them as binary strings with the convention $t \mapsto 0$ and $x \mapsto 1$

For instance the word "txttx" becomes "01001", which corresponds to the following integral:

$$S_{01001}(X_T) = \int_0^T \int_0^{t_5} \int_0^{t_4} \int_0^{t_3} \int_0^{t_2} dt_1 \cdot dx_{t_2} \cdot dt_3 \cdot dt_4 \cdot dx_{t_5}$$

(T,X) PATH VS (X1,X2) PATH

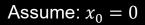




$$x_{1,t} = x_1(t)$$

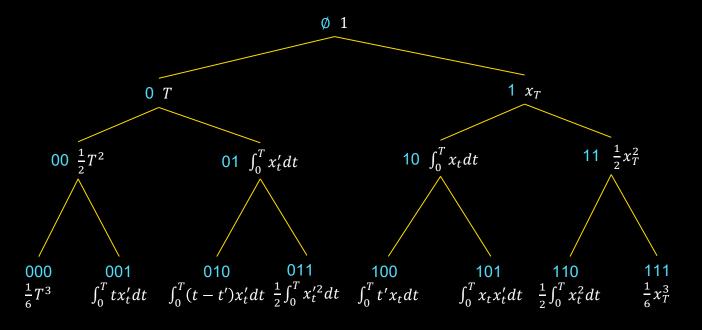
$$x_{2,t} = x_2(t)$$

SHORT WORDS EXAMPLES

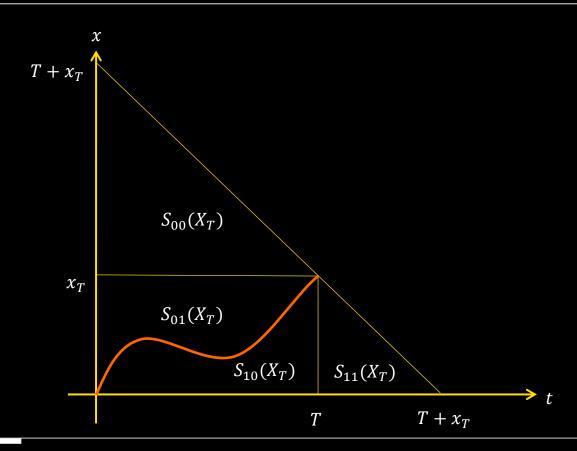


Define:

$$t' = T - t$$
$$x'_t = x_T - x_t$$

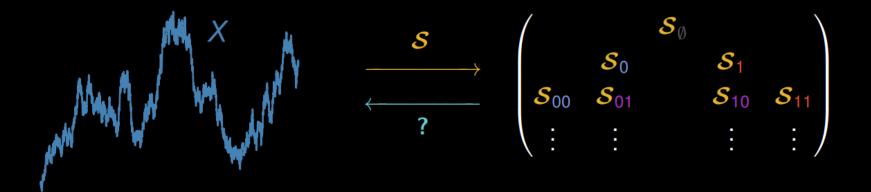


SIGNATURES: GEOMETRIC VISUALISATION



PATH RECONSTRUCTION

PATH RECONSTRUCTION



- We can compute signatures from a path.
- Can we reconstruct the path from the signatures?

Yes, and a subset of words is enough

RECONSTRUCTION PROPERTY

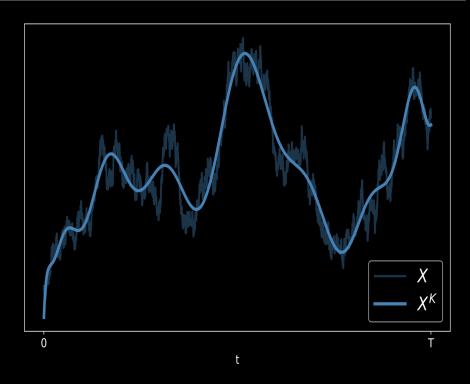
- Legendre words of length k + 1:

$$\alpha=(1,\underbrace{0,0,\ldots,0}_k):$$

$$S_{\alpha}(X_T) = \int_0^T x_s \frac{(T-s)^{k-1}}{(k-1)!} ds$$

give L^2 product of path with polynomials in t

They are enough to rebuild the path



Further details in [V. Tissot-Daguette. "Short communication: Projection of functionals and fast pricing of exotic options", SIFIN, 2022]

FUNCTIONAL ITÔ CALCULUS

FUNCTIONAL ITÔ CALCULUS

Paper available at: https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=1435551

- Calculus for functions of the path so far, not only functions of the current value

- Proper definition of Greeks for path dependent options

- Functional Itô formula gives Γ/Θ trade-off for path-dependent options

RESULTS AND APPLICATIONS

- Functional versions of Itô formula, Feynman-Kacs and BS PDE
- Super-replication (refinement of Kramkov decomposition)
- Lie Bracket of price and time functional derivatives
- Characterisation of attainable claims
- Decomposition of volatility risk

REVIEW OF ITÔ CALCULUS

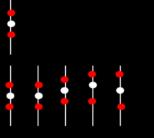
1D

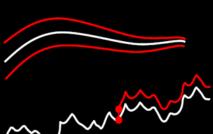
nD

infiniteD

Malliavin Calculus

Functional Itô Calculus



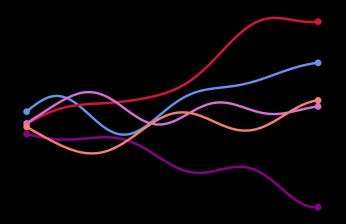


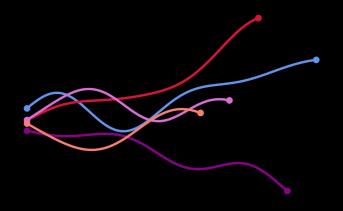
- current value
- possible evolutions

PATH SPACES

$$\Lambda_t = \{ \text{càdlàg paths over } [0, t] \}$$

$$\Lambda = \bigcup_{t \in [0,T]} \Lambda_t$$





$$X_t = \{X_t(s), s \in [0, t]\} \in \Lambda_t \qquad x_s = X_t(s) \in \mathbb{R}$$

FUNCTIONALS, T-FUNCTIONALS

T-functional:

$$g: \Lambda_T \mapsto \mathbb{R}$$

$$X_T \mapsto g(X_T)$$

A *T*-functional can be seen as a random variable in the Wiener space, or as a payoff of an exotic (path dependent) option.

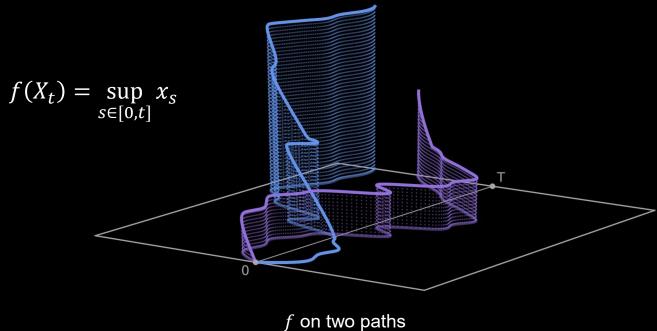
Functional:

$$f \colon \Lambda \mapsto \mathbb{R}$$

$$X_t \mapsto f(X_t)$$

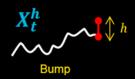
An example of a functional is the price of an exotic option, knowing X_t (the underlying price path) so far: $f(X_t) = \mathbb{E}^{\mathbb{Q}}[g(Y_T)|X_t]$

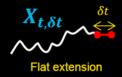
EXAMPLE OF A FUNCTIONAL



FUNCTIONAL DERIVATIVES

Two Operators:





Space derivative

$$\Delta_x f(X_t) \equiv \lim_{h \to 0} \frac{f(X_t^h) - f(X_t)}{h} \equiv \lim_{h \to 0}$$

Tative
$$\Delta_{x} f(X_{t}) \equiv \lim_{h \to 0} \frac{f(X_{t}^{h}) - f(X_{t})}{h} \equiv \lim_{h \to 0} \frac{f(X_{t}^{h}) - f(X_{t})}{h}$$

Time derivative

$$\Delta_t f(X_t) \equiv \lim_{\delta t \to 0^+} \frac{f(X_{t,\delta t}) - f(X_t)}{\delta t} \equiv \lim_{\delta t \to 0^+} \frac{f(\mathcal{N}_t) - f(\mathcal{N}_t)}{\delta t}$$

EXAMPLES

	f	x_{t}	$\int_0^t x_s ds$	$\mathbb{E}^{\mathbb{Q}}\Big[\int_0^T x_s ds X_t\Big]$	$\langle X \rangle_{t}$
~~~!	$\Delta_{\chi} f$	1	0	T – t	$2(x_{t} - x_{t-})$
~~~~	$\Delta_t f$	0	$x_{t}$	0	0

-
$$f(X_t) = h(t, x_t) \implies \Delta_x f = \partial_x h, \ \Delta_t f = \partial_t h$$

-
$$f(X_t) = \int_0^t x_s ds \implies 0 = \Delta_{tx} f \neq \Delta_{xt} f = 1$$

PATHWISE ITÔ & STRATONOVICH FORMULA

- **Föllmer's approach**: Given sequence of refining partitions $\Pi = (\Pi^N)_{N \ge 1}$ of [0, T]
- If $X \in \mathbf{\Omega}^{\Pi} = \{ \text{continuous}, \langle X \rangle_t^{\Pi} = \lim_{N \to \infty} \sum_{t_n \in \Pi^N} (x_{t_n \wedge t} x_{t_{n-1} \wedge t})^2 \text{ exists \& finite} \}$, then
 - Functional Itô formula $(f \in \mathbb{C}^{1,2})$

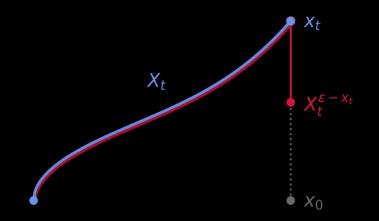
$$f(X_t) = f(X_0) + \int_0^t \Delta_t f(X_s) ds + \int_0^t \Delta_x f(X_s) dx_s + \frac{1}{2} \int_0^t \Delta_{xx} f(X_s) d\langle x \rangle_s$$

- Functional Stratonovich formula $(f \in \mathbb{C}^{1,2})$

$$f(X_t) = f(X_0) + \int_0^t \Delta_t f(X_s) ds + \int_0^t \Delta_x f(X_s) \circ dx_s$$

PATHWISE STRATONOVICH INTEGRATION

- Goal: define $\int_0^t h(X_S) \circ dx_S$ for all $h \in \mathbb{C}^{1,1}$ and $X \in \Omega^\Pi$
- Spatial anti-derivative: $H(X_t) = \int_{x_0}^{x_t} h(X_t^{\epsilon x_t}) d\epsilon$
 - $\Delta_{x}H = h$
 - $\Delta_t H(X_t) = \int_{x_0}^{x_t} \Delta_t h(X_t^{\epsilon x_t}) d\epsilon$



Functional Stratonovich formula (rearranged):

$$\int_0^t h(X_s) \circ dx_s = H(X_t) - \int_0^t \Delta_t H(X_s) ds$$

- If $h = S_{\alpha} \Longrightarrow$ one can define $S_{\alpha 1}$ in a pathwise manner (in fact, $S = (S_{\alpha})$ entirely)

FUNCTIONAL DERIVATIVES OF INTEGRALS

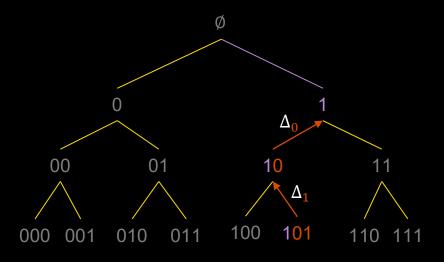
f	$\int_0^t h(X_s)ds$	$\int_0^t h(X_s)dx_s$	$\int_0^t h(X_s) \circ dx_s$
Integral type	Riemann	Itô	Stratonovich
$\Delta_t f$	$h(X_t)$	0	0
$\Delta_x f$	0	$h(X_{t-})$	$h(X_t)$
$\Delta_{xx}f$	0	0	$\Delta_{x}h(X_{t})$

FUNCTIONAL DERIVATIVES OF SIGNATURES

- Recall that $\Delta_0 f = \Delta_t f$, $\Delta_1 f = \Delta_x f$
- Recursion

-
$$\Delta_0 S_{\alpha 0} = S_{\alpha}$$
, $\Delta_1 S_{\alpha 0} = 0$

-
$$\Delta_0 S_{\alpha 1} = 0$$
, $\Delta_1 S_{\alpha 1} = S_{\alpha}$



 $\Rightarrow \Delta_{\gamma} S_{\alpha} \neq 0$ if and only if $\alpha = \beta_{\gamma}$. If so, then $\Delta_{\gamma} S_{\alpha} = S_{\beta}$

In particular, $\Delta_{\mathbf{v}} S_{\alpha}(X_0) = \delta_{\mathbf{v}\alpha}$

SIGNATURE SPANNING

SPACE SPANNED BY ORDER K SIGNATURES

- For a given T, define:
 - A_K , the space spanned by $2^{K+1} 1$ signatures from words of order $\leq K$ (linearly dependent, e.g. $S_{01} = TS_1 S_{10}$)
 - B_K , the space spanned by 2^K signatures from words of order = K
- Then

$$A_K = B_K$$
$$\dim(A_K) = \dim(B_K) = 2^K$$

- The 2^K words of length K are linearly independent and form a basis of B_K , hence of A_K . However, it's beneficial to have a incremental basis when increasing the order.

INCREMENTAL BASIS

Incremental basis: at step K + 1 add 2^K words of the 2^{K+1} words of length K + 1

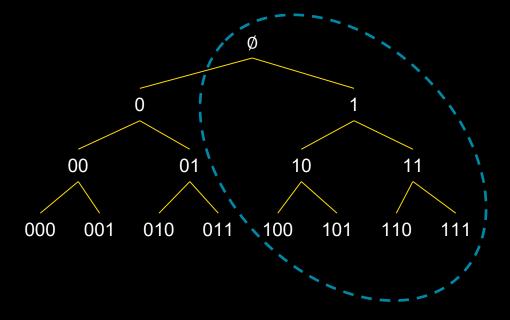
There are many (but not all) ways to do it.

Favored choice: at each step take the words that end with 1 (plus Ø word).

It provides an interpretation as dynamic stock trading (up to Itô / Stratonovich).

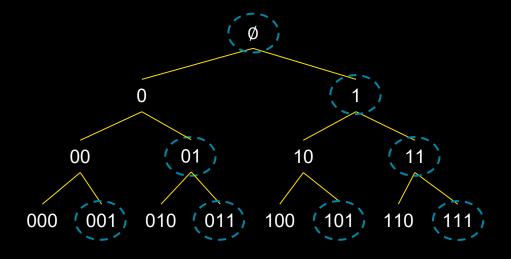
INCREMENTAL BASIS

Words that start with 1 (plus Ø word):



INCREMENTAL BASIS

Words that end with 1 (plus Ø word):



INDEPENDENT SIGNATURES

When considering paths of all lengths (not a fixed T), then all signatures are linearly independent

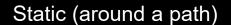
- Proof: If
$$f(X_t) = \sum_{|\alpha| < K} c_{\alpha} S_{\alpha}(X_t) \equiv 0$$
, then $0 = \Delta_{\alpha} f(X_0) = c_{\alpha}$

- The space generated by signatures of order up to K is of dimension $2^{K+1} - 1$

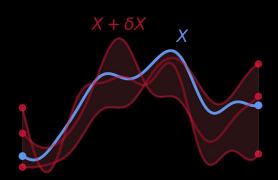
FUNCTIONAL EXPANSIONS

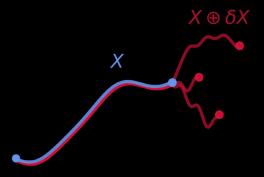
CLASSIFICATION OF EXPANSIONS

Classical



Dynamic (after a path)





TAYLOR AS ITERATED INTEGRALS

Usual 1D case: Applying iteratively the fundamental theorem of calculus:

$$f(x) = f(0) + \int_0^x f'(y)dy$$
$$f'(y) = f'(0) + \int_0^y f''(z)dz$$
$$f''(z) = \cdots$$

leads to the Taylor expansion

$$f(x) = f(0) + \sum_{k=1}^{n} f^{(k)}(0) \frac{x^k}{k!} + \int_0^x f^{(n+1)}(z) \frac{(x-z)^n}{n!} dz$$

The term $\frac{x^k}{k!}$ comes from the iterated integral $\int_0^x \int_0^{x_k} ... \int_0^{x_2} dx_1 ... dx_{k-1} dx_k$

WIENER CHAOS EXPANSION

Price functional: $f(X_t) = \mathbb{E}^{\mathbb{Q}}[g(Y_T)|X_t], g: \Lambda_T \to \mathbb{R}$

Martingale Representation:
$$g(X_T) = \underbrace{\mathbb{E}_0^{\mathbb{Q}}[g(Y_T)]}_{=\phi_0} + \int_0^T \Delta_x f(X_t) dx_t$$

Iterate:
$$\Delta_{x} f(X_{t}) = \underbrace{\mathbb{E}_{0}^{\mathbb{Q}}[\Delta_{x} f(Y_{t})]}_{=\phi_{1}(t)} + \int_{0}^{t} \Delta_{x} \mathbb{E}^{\mathbb{Q}}[\Delta_{x} f(Y_{t}) \mid X_{s}] dx_{s}$$
, ...

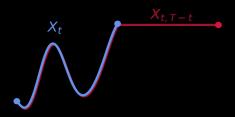
⇒ Wiener Chaos

$$g(X_T) = \phi_0 + \sum_{k \ge 1} \int_{0 < t_1 < \dots < t_k < T} \phi_k(t_1, \dots, t_k) \, dx^{\otimes k}$$

Malliavin calculus: $\phi_k(t_1, ..., t_k) = \mathbb{E}_0^{\mathbb{Q}}[D_{t_1 \cdots t_k} g(Y_T)]$

INTRINSIC VALUE FUNCTIONAL

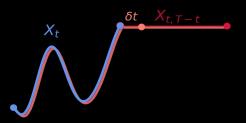
Given a T-functional g, one can associate a functional $f(X_t) = g(X_{t,T-t})$, $f(X_T) = g(X_T)$

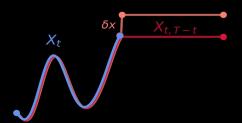


Properties:

(i)
$$\Delta_t f(X_t) = 0$$

(ii)
$$\Delta_x f(X_t) = D_t g(X_{t,T-t})$$



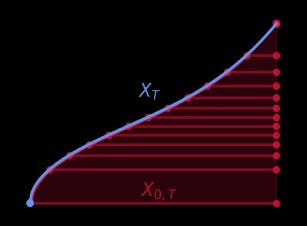


 \Longrightarrow Functional Stratonovich: $g(X_T) = g(X_{0,T}) + \int_0^T D_t g(X_{t,T-t}) \circ dx_t$

INTRINSIC VALUE EXPANSION

Stratonovich:
$$g(X_T) = g(X_{0,T}) + \int_0^T D_t g(X_{t,T-t}) \circ dx_t$$

Iterate:
$$D_t g(X_{t,T-t}) = D_t g(X_{0,T}) + \int_0^t D_{st} g(X_{s,T-s}) \circ dx_s$$
, ...



⇒ Intrinsic Value Expansion

$$g(X_T) = g(X_{0,T}) + \sum_{k \ge 1} \int_{0 < t_1 < \dots < t_k < T} D_{t_1 \dots t_k} g(X_{0,T}) \circ dx^{\otimes k}$$

TAYLOR EXPANSION OF A FUNCTIONAL

Define

$$x_{t_i}^0 = t_i \quad x_{t_i}^1 = x_{t_i} \quad dx^{\alpha} = dx_{t_1}^{\alpha_1} \circ \dots \circ dx_{t_K}^{\alpha_K}$$
$$\Delta_{\alpha} f = \Delta_{\alpha_1, \dots, \alpha_K} f = \Delta_{\alpha_1} \left(\Delta_{\alpha_2} \left(\dots \left(\Delta_{\alpha_K} f \right) \right) \right)$$

For instance, $\Delta_{01}f = \Delta_0(\Delta_1 f) = \Delta_t(\Delta_x f)$

By induction, one gets the Taylor (Maclaurin) formula:

$$f(X_t) = \sum_{|\alpha| < K} \Delta_{\alpha} f(X_0) S_{\alpha}(X_t) + r_K(X_t)$$

with the convention $\Delta_{\emptyset} f(X_0) = f(X_0)$ and

$$r_K(X_t) = \sum_{|\alpha|=K} \int_{0 < t_1 < \dots < t_K < t} \Delta_{\alpha} f(X_{t_1}) \circ dx^{\alpha}$$

 ${S_{\alpha}: \alpha \in Words}$ form a basis of the space of functionals

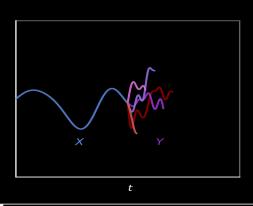
FUNCTIONAL TAYLOR (GENERAL CASE)

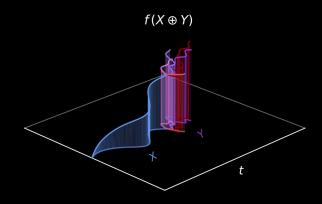
Theorem: Let $X_s \in \Lambda$, $Y_u \in \Omega^{\Pi}$ and $f \in \mathbb{C}^{K,K+1}$. Then,

$$f(X_S \oplus Y_u) = \sum_{|\alpha| < K} \underbrace{\Delta_{\alpha} f(X_S)}_{\text{functional path}} \underbrace{S_{\alpha}(Y_u)}_{\text{path}} + \underbrace{r_K(X_S, Y_u)}_{\text{remainder}}$$

Sum over words of product of 2 terms

- Kth functional derivative at 0 (depending only on the functional, not on the path)
- K-fold integral of path (signature, depending on the path, not on the functional)





2 USES

Functional Maclaurin Expansion

$$f(X_t) = \sum_{|\alpha| < K} \underbrace{\Delta_{\alpha} f(X_0)}_{\text{functional}} \underbrace{S_{\alpha}(X_t)}_{\text{path}} + r_K(X_t)$$

- 1. Option pricing: cubature (expectation)
 - Find "good" weighted paths that price the signatures of the short words correctly
- 2. Hedging: matching the coefficients (pathwise)
 - Find a hedge with the same first coefficients

SUMMARY

Wiener Chaos

$$g(X_T) = \mathbb{E}^{\mathbb{Q}}[g(Y_T)] + \sum_{k \leq K} \int_{0 < t_1 < \dots < t_k < T} \mathbb{E}^{\mathbb{Q}}[D_{t_1 \dots t_k} g(Y_T)] dx^{\otimes k} + r_K^{WC}$$

Intrinsic Value

$$g(X_T) = g(X_{0,T}) + \sum_{k \le K} \int_{0 < t_1 < \dots < t_k < T} D_{t_1 \dots t_k} g(X_{0,T}) \circ dx^{\otimes k} + r_K^{IV}$$

- Functional Taylor

$$f(X_t) = f(X_0) + \sum_{|\alpha| < K} \Delta_{\alpha} f(X_0) S_{\alpha}(X_t) + r_K^{FT}$$

LINKING INTRINSIC AND FUNCTIONAL EXPANSIONS

IV expansion

$$g(X_T) = g(X_{0,T}) + \sum_{k \le K} \int_{0 < t_1 < \dots < t_k < T} D_{t_1 \dots t_k} g(X_{0,T}) \circ dx^{\otimes k} + r_K^{IV}$$

Functional expansion

$$g(X_T) = g(X_{0,T}) + \sum_{|\alpha| \le K} \Delta_{\alpha} f(X_0) S_{\alpha}(X_T) + r_K^{FT}$$

We infer that

$$D_{t_1 \cdots t_k} g(X_{0,T}) = \sum_{|\alpha|_1 = k} \Delta_{\alpha} f(X_0) \prod_{l=0}^k \frac{(t_{l+1} - t_l)^{\gamma_l}}{\gamma_l!}$$

Where γ_l is the number of 0's between 2 consecutive 1's

Bloomberg

FROM FUNCTIONAL EXPANSION TO T-FUNCTIONAL EXPANSION

We have seen the expansion of a functional. What about the expansion of a T-functional, $g(X_T)$?

- Find a functional $f(X_t)$ such that $f(X_T) = g(X_T)$ (smooth embedding)
- Expand $f: f(X_t) = \sum_{\alpha} \Delta_{\alpha} f(X_0) S_{\alpha}(X_t)$
- Evaluate at X_T : $g(X_T) = f(X_T) = \sum_{\alpha} \Delta_{\alpha} f(X_0) S_{\alpha}(X_T)$
- Rewrite in the incremental basis $g(X_T) = \lambda_{\emptyset} + \sum_{\alpha} \lambda_{\alpha} S_{(\alpha 1)}(X_T)$
- The decomposition does not depend on the choice of *f*

APPLICATIONS

EUROPEAN AND EXOTIC OPTIONS

- European options are spanned by the words (1,1..,1)

$$S_{(1,\dots,1)_k}(X_T) = \frac{x_T^k}{k!}$$

It gives the moments of x_T .

- Exotic options are spanned by all the words

Iterated integrals $S_{\alpha}(X_T)$ are the building blocks of path dependence.

EUROPEAN OPTION EXAMPLE

Approximation of a *T*-maturity
European call by a linear
combination of *T*-signature payoffs

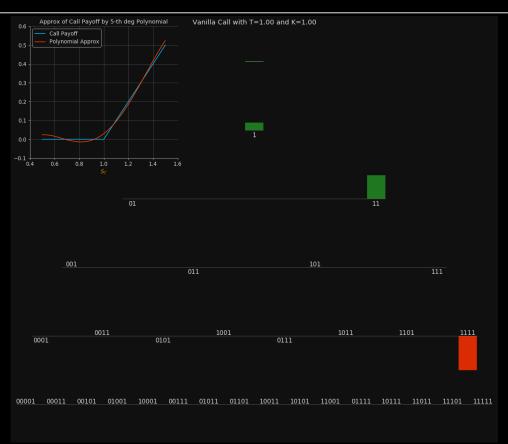
Payoff at
$$T$$
: $(x_T - x_0)^+$

$$S_1(X_T) = x_T$$

$$S_{11}(X_T) = x_T^2$$

..

$$S_{\underbrace{1\cdots 1}_{k}}(X_{T}) = \frac{x_{T}^{k}}{k!}$$



FORWARD T1<T EXAMPLE

Approximation of a T_1 -maturity forward by a linear combination of T-signature payoffs, $T_1 < T$

Payoff at *T*:

$$x_{T_1} - x_0 = \int_0^{T_1} dx_t = \int_0^T H(T_1 - t) dx_t$$

$$S_1(X_T) = \int_0^T 1 dx_t$$
$$S_{01}(X_T) = \int_0^T t dx_t$$

$$S_{\underbrace{0\cdots 0}_{k}1}(X_{T}) = \int_{0}^{T} \frac{t^{k}}{k!} dx_{t}$$

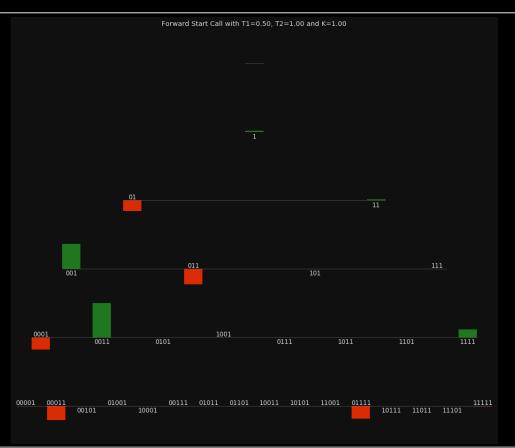
FORWARD START EXAMPLE

Approximation of a $T_1 \times T_2$ forwardstart call by a linear combination of Tsignature payoffs, $T_1 < T_2 < T$

Payoff at *T*:

$$(x_{T_2} - x_{T_1})^+$$

$$= \left(\int_0^T [H(T_2 - t) - H(T_1 - t)] dx_t \right)^+$$



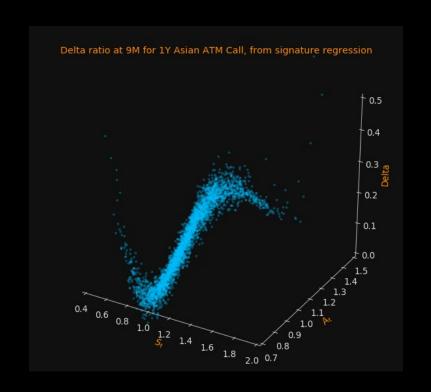
DEEP HEDGE MADE SIMPLE

Given a set of paths, historical or synthetic, and a derivative payoff, find the best delta hedge $h(X_t)$, as a functional of X_t , the path so far.

- Neural net approach: parameterize $h(X_t)$ by a neural network (LSTM, GRU, ...); train the network by gradient descent, or
- Signature approach: write $h(X_t)$ as a weighted sum of signatures:

$$h(X_t) = \sum_{\alpha} \lambda_{\alpha} S_{\alpha}(X_t)$$

Find the weights λ_{α} by multiple regression.



CONCLUSION

- Signatures are natural building blocks of path-dependent options
- In the (t, x_t) case, we show a reconstruction of the path from its signature using Legendre polynomials
- For continuous paths with finite quadratic variation along a given sequence of partitions, we establish
 - A pathwise functional Taylor expansion
 - An expansion for T –functionals based on the intrinsic value
- Comparison with classical Taylor expansion and Wiener chaos
- The functional Taylor expansion decomposes exotic claims. This opens the door to novel pricing and hedging algorithms

REFERENCES

- V. Bally, L. Caramellino, and R. Cont, "Stochastic integration by parts and functional Itô calculus",
 Advanced Courses in Mathematics CRM Barcelona, 2016
- **B. Dupire**, "Functional Itô Calculus", *SSRN*, republished in *Quantitative Finance*, 5, pp. 721-729, 2019
- **K.-T. Chen**, "Integration of Paths, Geometric Invariants and a Generalized Baker-Hausdorff Formula", *Annals of Mathematics*, 65, pp. 163–178, 1957
- **M. Fliess**, "On the concept of derivatives and Taylor expansions for nonlinear input-output systems", *The 22nd IEEE Conference on Decision and Control*, pp. 643-646, 1983
- **H. Föllmer**, "Calcul d'Itô sans probabilités". *Séminaire de probabilités de Strasbourg*, 15:143–150, 1981
- **C. Litterer and H. Oberhauser**, "On a Chen–Fliess Approximation for Diffusion Functionals", *Monatshefte für Mathematik*, 175, pp. 577-593, 2011
- T. Lyons, S. Nejad, and I. Perez Arribas, "Non-parametric Pricing and Hedging of Exotic Derivatives", Applied Mathematical Finance, 27:6, pp. 457-494, 2020
- V. Tissot-Daguette. "Short communication: Projection of functionals and fast pricing of exotic options", SIAM
 Journal on Financial Mathematics, 13(2):SC74–SC86, 2022

Bloomberg

Thank You