Stochastic flows and rough differential equations on foliated spaces

Yuzuru INAHAMA

Kyushu University

Online Talk at DataSig Seminar 22 Sep 2021 (Jointwork with Kiyotaka SUZAKI)

Yuzuru INAHAMA

Kyushu University

Aim of the talk

- We consider SDE on compact foliated space. First introduced and solved by Suzaki (2015)
- We prove that <u>stochastic flow</u> associted to it exists.
- Our method is rough path theory, because Kolmogorov-Čentsov continuity criterion is UNavailable.
- From a viewpoint of RP theory, there is no big difficulty in constructing the flow.
- Our work may open the door for full stochastic analysis on foliated spaces (SDE theory, rough path theory, Malliavin calculus, path space analysis, etc.)

Consider the following SDE on \mathbb{R}^n or manifold:

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \quad x_0 = \xi \text{ (deterministic)}.$$

Here, V_i 's are nice vector fields, $(w_t)_{t\geq 0}$ is *d*-dim BM, ξ is an initial value. We often write $x_t = x(t, \xi, w)$.

ξ → x(t, ξ, w) is called the stochastic flow of homeo/diffeomorphism associated with the SDE.
Stochastic flows play key roles in stochastic analysis over (Riemannian) manifolds. (∃ Many deep resluts.)

Yuzuru INAHAMA

Stochastic flows and rough differential equations on foliated spaces

One of the hardest parts of stochastic flow theory is its existence, i.e., the existence of a r.v.

 $w \mapsto [\xi \mapsto x(t,\xi,w)]$

because the negligible null set for the SDE depends on ξ and there are uncountably many ξ 's.

The standard (and only?) tool to overcome this difficulty is Kolmogorov-Čentsov criterion for \exists of conti. modification.

$$\mathsf{E}[|x(t,\xi,\cdot)-x(s,\eta,\cdot)|^{\heartsuit}] \lesssim \mathsf{dist}\,((t,\xi),(s,\eta))^{n+1+\bigstar}$$

But, this criterion (basically) works only on (a subset of) Euclidean space.

Stochastic flows and rough differential equations on foliated spaces

- Let \mathcal{M} be a compact foliated space. \mathcal{M} itself and its transversal direction are just (locally compact) metric spaces.

- But, a certain differential structure is given ("leafwise C^k ").
- So, there are SDEs on \mathcal{M} :

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \quad x_0 = \xi$$
 (deterministic).

Here, V_i 's are leafwise smooth (or C^3) vector fields, $(w_t)_{t\geq 0}$ is *d*-dim BM, $\xi \in \mathcal{M}$ is an initial value.

Formulated and solved by Suzaki ('15) for every fixed ξ . But, KC criterion is NOT available (even when \mathcal{M} happens to have a manifold structure). \exists Stochastic Flow?

- To prove the existence of $w \mapsto [\xi \mapsto x(t, \xi, w)]$, we will use Rough Path Theory.
- RP theory is a "deterministic version" of Itô's SDE theory.
- The solution map of rough differential eq., Lyons-Itô map, is continuous in all input data (ξ , V_i , "the lift of w").
- RDE naturally generates a flow in a deterministic way.
- Only probabilistic part is lifting the noise $w \mapsto W$ (BRP). Hence, this is the only place where "exceptinal null set" appears. Notice it is clearly independent of ξ .

Quite natural to guess: If we define RDE on \mathcal{M} , then we can easily construct the stochastic flow on \mathcal{M} . $\heartsuit \heartsuit$ (Loosely, this is our main result.)

Rough Differential Equation

• Geometric Rough Path $\triangle := \{(s, t) \mid 0 \le s \le t \le 1\}, \quad \alpha \in (0, 1],$ $A : \triangle \rightarrow \mathbb{R}^d$, conti.

$$||A||_{\alpha} := \sup_{0 \le s < t \le 1} |A_{s,t}|/|t-s|^{\alpha}$$

$$\mathcal{T}^{(2)}(\mathbb{R}^d) := \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d \otimes \mathbb{R}^d)$$

(truncated tensor algebra of step 2)

Yuzuru INAHAMA

Kyushu University

Definition (rough path) $\alpha \in (1/3, 1/2]$ "roughness" A conti. map $\mathbf{W} = (1, W^1, W^2) : \triangle \to T^{(2)}(\mathbb{R}^d)$ is said to be a rough path if

(i) K. T. Chen's identity $0 \le s \le u \le t \le 1$,

Yuzuru INAHAMA

Example (smooth RP) $h: [0, 1] \rightarrow \mathbb{R}^{d};$ a Camerom-Martin path.

$$H^1_{s,t}:=h_t-h_s,\quad H^2_{s,t}:=\int_s^t(h_u-h_s)\otimes dh_u$$

This $\mathbf{H} = (H^1, H^2)$ is clearly a RP. Lift of h. The lift map is denoted by \mathcal{L} , i.e., $\mathbf{H} = \mathcal{L}(h)$.

Definition (the geometric RP space) (complete, separable)

$$G\Omega_{lpha}(\mathbb{R}^d):=\overline{\{\mathcal{L}(h)\mid h\in\mathcal{H}\}}^{d_{lpha}}\subset\Omega_{lpha}(\mathbb{R}^d).$$

Yuzuru INAHAMA

Kyushu University

Rough Differential Equation on \mathbb{R}^n

- $V_i \colon \mathbb{R}^n \to \mathbb{R}^n, \quad C_b^3. \quad (0 \le i \le d)$ (Often viewed as vector fields on \mathbb{R}^n .)
- For $\mathbf{W} = (W^1, W^2) \in G\Omega_{\alpha}(\mathbb{R}^d)$, consider the following equaiton on \mathbb{R}^n . This is called RDE driven by \mathbf{W} :

$$dx_t = \sum_{i=1}^d V_i(x_t) d\mathbf{W}_t^i + V_0(x_t) dt, \quad x_0 = \xi \in \mathbb{R}^n$$

(The superscript *i* denotes the coordinate, not the level.)

• If **W** is the natural lift of Brownian motion $(w_t)_{t\geq 0}$, then RDE solution coincides with the solution of usual Stratonovich SDE a.s.:

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \quad x_0 = \xi$$

• If **W** is a natural lift of a Cameron-Martin path h, i.e., **W** = $\mathcal{L}(h)$, then RDE solution coincides with the solution of

$$dx_t = \sum_{i=1}^d V_i(x_t) dh_t^i + V_0(x_t) dt, \quad x_0 = \xi$$

in the standard sense.

The (deterministic) solution map

 $(\mathbf{W}, \xi, \{V_i\}) \quad \mapsto \quad x \in C^{\alpha}([0, 1], \mathbb{R}^n)$

is continuous from $G\Omega_{\alpha}(\mathbb{R}^d) \times \mathbb{R}^n \times C^3_b(\mathbb{R}^n, \mathbb{R}^n)^{d+1}$.

[Remark] For our porpose, continuity in $\{V_i\}$ is crucial. [Remark] Though the definition of geometric RP is unique, \exists several formulations of RDE (at least 6 or 7?).

Yuzuru INAHAMA

Brownian Rough Path

$$\begin{split} & w = (w_t)_{0 \le t \le 1}: \qquad d\text{-dim BM.} \\ & w(m) = (w(m)_t)_{0 \le t \le 1}: \qquad \text{dyadic piecewise linear} \\ & \text{approximation of } w \text{ associated with the partition} \\ & \{j/2^m: \ 0 \le j \le 2^m\}. \end{split}$$

Then, the following set is of Wiener measure 1:

 $\left\{w: \ \left\{\mathcal{L}(w(m))\right\}_{m=1}^{\infty} \text{ is Cauchy in } G\Omega_{\alpha}(\mathbb{R}^{d})
ight\}$

So, we set $\mathcal{L}(w) = \lim_{m \to \infty} \mathcal{L}(w(m))$ if w belongs to the above subset (and set $\mathcal{L}(w)$ to be zero-RP if otherwise).

Yuzuru INAHAMA

Kyushu University

Then, $\mathcal{L}: C_0([0,1], \mathbb{R}^d) \to G\Omega_{\alpha}(\mathbb{R}^d)$ is a everywhere-defined Borel measurable map.

If we put $\mathbf{W} = \mathcal{L}(w)$ in Lyons-Itô map, then $x = x(\mathbf{W}, \xi, \{V_i\})$ coincides with the solution of corresponding Stratonovich SDE. (Thanks to Wong-Zakai's approximation & Lyons continuity theirem)

Thus, the solution of SDE is expressed as the image of a continuous map.

Stochastic flows and rough differential equations on foliated spaces

Three Major formalisms of RDE

Lyons' original formulation

Solution is a fixed point of rough integral equation. Both RP integrals and solutions are rough paths.

Gubinelli's formulation

Solution is a fixed point of rough integral equation. Both RP integrals and solutions are controlled paths w.r.t. a given rough path $\mathbf{W} \in G\Omega_{\alpha}(\mathbb{R}^d)$.

Davie's formulation Use Euler-Taylor type expansion as definition. Solution is a usual path. (∄ integral eq.)
 ∃ some variants, e.g., Bailleul's works.

One of the variants of Davie's formulation (by Bailleul '15. See also Cass-Wiedner '16+): $(x_t)_{0 \le t \le 1}$ solves the RDE driven by $\mathbf{W} = (W^1, W^2)$ if and only if

$$f(x_t) - f(x_s) = \sum_{i=1}^d V_i f(x_s) W_{s,t}^{1,i} + \sum_{j,k=1}^d V_j V_k f(x_s) W_{s,t}^{2,jk} + V_0 f(x_s) (t-s) + O(|t-s|^{3\alpha}), \quad \forall f \in C^3(\mathbb{R}^n, \mathbb{R}).$$

This formulation works very well on manifolds because

- A solution is a usual path (No "higher objects").
- Independent of the choice of local chart.

So we will use this type of formulation.

Stochastic flows and rough differential equations on foliated spaces

Foliated Spaces

- Let \mathcal{M}, \mathcal{Z} be locally compact metric space.

- Let $A \subset \mathbb{R}^p$, $B \subset \mathcal{Z}$ be open. A function $f: A \times B \to \mathbb{R}^n$ is called <u>leafwise</u> C^k if f = f(y, z) is C^k in y for each fixed z and the derivatives are continous in (y, z).

- Let $\phi: A \times B \to \hat{A} \times \hat{B}$ is called <u>leafwise C^k </u> if it is of the form $\phi(y, z) = (f(y, z), g(z))$ for some $f \in C_L^k$ and some continuous g.

Definition (foliated space) \mathcal{M} is called a *p*-dimensional foliated space (transversely modelled on \mathcal{Z}) if the following conditions are satisfied:

- ∃ open cover $\{U_{\beta}\}$ of \mathcal{M} , ∃ homeo ϕ_{β} : $U_{\beta} \to A_{\beta} \times B_{\beta}$, where $A_{\beta} \subset \mathbb{R}^{p}, B_{\beta} \subset \mathcal{Z}$ are certain open subsets.
- $\phi_{\beta} \circ \phi_{\gamma}^{-1}$: $\phi_{\gamma}(U_{\beta} \cap U_{\gamma}) \to \phi_{\beta}(U_{\beta} \cap U_{\gamma})$ are leafwise C^{∞} .
- A set of the form $\phi_{\beta}(A_{\beta} \times \{z\})$ is called a plaque.
- Patching together intersecting plaques, you get <u>a leaf</u> on \mathcal{M} .
- Each leaf is a C^{∞} -manifold. Different leaves never intersect.
- **&** Foliated manifold \implies Lamination \implies Foliated space.
- In what follows, \mathcal{M} is assumed to be compact.

Example (Mapping Torus)

- \mathcal{Z} : compact metric space. $F: \mathcal{Z} \to \mathcal{Z}$: homeomorphism.
- \mathbb{Z} -action on $\mathbb{R} \times \mathcal{Z}$:

$$k \cdot (y, z) = (y + k, F^k(z)), \qquad k \in \mathbb{Z}.$$

• Then, the quotient space $\mathcal{M} := \mathbb{R} \times \mathcal{Z}/\mathbb{Z}$ is a compact 1-dim FS modelled transversally on \mathcal{Z} .

Stochastic flows and rough differential equations on foliated spaces

RDE/SDE on Foliated Spaces

Let V_i $(1 \le i \le d)$ be leafwise C^3 vector fields. SDEs on \mathcal{M} :

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \quad x_0 = \xi$$
 (determinstic).

Formulated and solved by Suzaki (2015).

The corresponding RDE should be

$$dx_t = \sum_{i=1}^d V_i(x_t) d\mathbf{W}_t^i + V_0(x_t) dt, \quad x_0 = \xi ext{ (determinstic)}.$$

Yuzuru INAHAMA

Kyushu University

Definition (Solution to RDE)

 $(x_t)_{0 \leq t \leq 1}$ is said to solve the RDE on \mathcal{M} if $x_0 = \xi$ and

$$f(x_t) - f(x_s) = \sum_{i=1}^d V_i f(x_s) W_{s,t}^{1,i} + \sum_{j,k=1}^d V_j V_k f(x_s) W_{s,t}^{2,jk} + V_0 f(x_s) (t-s) + O(|t-s|^{3\alpha}), \quad \forall f \in C_L^3(\mathcal{M})$$

[Remark]

A (time-local) solution never gets out of the initial plaque. Hence, a solution stays in one leaf.

[Fact]

 \exists ! unique global solution for every ξ and $\mathbf{W} = (W^1, W^2)$.

[Key Point]

In a local chart

 $\mathcal{M} \supset U \ni \quad x \longleftrightarrow (y,z) \quad \in A \times B \subset \mathbb{R}^p \times \mathcal{Z},$

the RDE on \mathcal{M} is equivalent to the following one on \mathbb{R}^{p} :

$$dy_t = \sum_{i=1}^d V_i(y_t, z_0) d\mathbf{W}_t^i + V_0(y_t, z_0) dt, \qquad \phi(\xi) = (y_0, z_0)$$

Therefore, varying the initial value ξ in the transversal direction amounts to varying the coefficient vector fields on \mathbb{R}^{p} -valued RDE. (The continuity in ξ is heuristically evident.) \implies The flow associated with RDE on \mathcal{M} exists and it is a "leafwise homeomorphism"

Yuzuru INAHAMA

Main Result

Theorem 1 (I.-Suzaki, '20)

Let **W** be Brownian rough path and consider the RDE on \mathcal{M} driven by **W**. Then, the global solution $x_t = x(t, \xi, \mathbf{W})$ coincides with the solution of corresponding stratonovich SDE. Moreover,

$$w \hspace{0.1in}\mapsto \hspace{0.1in} ig[(t,\xi)\mapsto x(t,\xi,{f W})\in \mathcal{M}ig]$$

almost surely defines a flow of leafwise homeomorphisms.

• In reality, this is a flow of leaf-preserving leafwise diffeomorphisms of \mathcal{M} .

Some comments are in order:

The only exceptional null set is
 {w: w does not admit a RP lift}. But, this is clearly
 independent of the initial value ξ.

The inverse flow is given by the solution to the RDE driven by <u>the time reversal</u> of the same rough path.

[1] As usual, the heat semigroup associated with $\frac{1}{2}\sum_{i=1}^{d}V_i^2 + V_0$ admits a Feynman-Kac representation:

 $T_t f(\xi) = \mathbb{E}[f(x(t,\xi,\mathbf{W}))].$

Suzaki (2015) showed Feller property, i.e., $f \in C(\mathcal{M}) \Longrightarrow T_t f \in \overline{C(\mathcal{M})}$ by checking the continuity $\xi \mapsto x(\bullet, \xi, w)$ in the sense of limit in probability. His proof is rather long. Now this fact immediately follows from our main result.

Yuzuru INAHAMA

[2] Measurability issue: In Suzaki (2015),

 $(\xi, w) \mapsto x(\bullet, \xi, w)$ (strong sol. of SDE)

is only shown to be measurable w.r.t.

$$\bigcap \{ \overline{\mathcal{B}(\mathcal{M}) \otimes \mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d))}^{m \times \mu} \colon m \in \operatorname{Prob}(\mathcal{M}) \},$$

where μ is the Wiener measure.

But, this σ -field looks a bit too large.

Stochastic flows and rough differential equations on foliated spaces

In our approach, it is written as the composition of Lyons-Itô map and RP lift \mathcal{L} (i.e. $\mathbf{W} = \mathcal{L}(w)$).

$$(\xi, w) \mapsto x(\bullet, \xi, w) = x(\bullet, \xi, \mathcal{L}(w)).$$

So, as an everywhere defined map, this is measurable w.r.t.

 $\mathcal{B}(\mathcal{M})\otimes \mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d)).$

As a μ -equivalence class, this is measurable w.r.t.

$$\mathcal{B}(\mathcal{M})\otimes\overline{\mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d))}^{\mu}.$$

Therefore, we have slightly improved the previous work.

Stochastic flows and rough differential equations on foliated spaces

The End