Structure theorems for streamed information

https://www.datasig.ac.uk

Cris Salvi, Joscha Diehl, Terry Lyons, Rosa Preiß, and Jeremy Reizenstein

A rough path between mathematics and data science

he Alan Turing In Istitute L

Framing assumptions for this talk

- on some very fine scale, most instances of streamed information can be conceptually modelled as (rough) path segments $\gamma_u, u \in [s, t]$
- we are interested in such streams because of their potential effects and applications, in addition to their value at any given time
- Unparameterized path segments are a real-world data type

the signature of a path transforms a path segment γ in the Banach space V into a sequence of tensors within the algebra T((V)). This non-commutative exponential is obtained by evaluating the solution S_t of the controlled differential equation $dS_u = S_u \otimes d\gamma_u$, $S_s = 1$. the signature of a path characterises a path up to a generalised re-parameterization (treelike equivalence) [3], [1]. We call the set of unparameterized paths $\Omega(V)$. The signatures of unparameterized paths form a subgroup G of the grouplike elements in T((V)). Each path has a unique tree reduced and unparameterised representative.

The signature representation filters out a symmetry made more powerful because we can answer the basic questions

- Understanding the spaces of functions on *G*.
- Give structure to the space of "polynomial" functions on *G*.

However, the signature is big, and does not directly offer a way of describing the data that is scalable and localisable. Logsignature - there is a hall basis, but the coefficients are global -change the basis elsewhere and you change the coefficients here.

Explicit algebraic bases

- Evaluating a function on a particular stream has a cost. After albibig involves testing the stream γ in some way.
- Having evaluated $f(\gamma)$ and $g(\gamma)$ the cost of additionally evaluating $f(\gamma)g(\gamma)$ is a scalar multiplication without reference to the stream γ .
- Identifying an algebraic basis splits the process of evaluating a "polynomial" function on *G* into two parts:
 - evaluating the basis sensors on the underlying data γ and then
 - evaluating a unique polynomial function in these expensive but informative precomputed values
- Moreover if the bases are defined hierarchically using Hall sets, they can be computed recursively in a localised way (to compute one, one must compute its ancestors but not others).

The results in this work

- give a direct proof of [2]: polynomials in pure areas generate the shuffle algebra DataSig
- prove that polynomials in Hall integrals uniquely generate the shuffle algebra
- prove that polynomials in Hall areas uniquely generate the shuffle algebra

These results are fundamental structure theorems for streamed information. Polynomial functions split uniquely into two components -

- a first that engages with the underlying stream and which is potentially evaluated via some "physical" integration process that responds to the underlying signal
 - is intrinsically nasty operator
 - controlled differential equations are not closable in the uniform topology on γ - see [4]
- and a second that is a robust and continuous numerical polynomial evaluation made without reference to the stream.

Salvi... (NEMSA)

200

Words as functions on paths

If *A* is an alphabet of *d* letters, then the tensor algebra is the space spanned by words

$$T((A)) = \mathbb{R} \oplus V \langle A \rangle \oplus V \langle A \rangle^{\otimes 2} \oplus \dots$$

Definition

Let $I \subset \mathbb{R}_+$ be a compact time interval and let $\gamma \in C^1(I, V)$ be a continuous path of bounded variation. For any sub-interval $[a, b] \in I$ define the signature $Sig(\gamma)_{[a,b]}$ of the path γ over [a, b] as the following element of T(V)

$$\begin{aligned} \operatorname{Sig}(\gamma|_{[a,b]}) &= 1 + \sum_{k=1}^{\infty} \int \dots \int d\gamma_{t_1} \otimes \dots \otimes d\gamma_{t_n} \\ w(\gamma|_{[a,b]}) &= \int \dots \int (w_1, d\gamma_{t_1}) \otimes \dots \otimes \langle w_n, d\gamma_{t_n} \rangle \end{aligned}$$

Salvi... (NEMSA)

These words span an algebra of real functions on path segments (the shuffle algebra) that contains the constants and separates paths (that are distinct modulo paramterisation)

$$\langle f \sqcup g, x \rangle = \langle f, x \rangle \langle g, x \rangle$$
 (1)

Definition

Let *u* and *v* be words in W_A then the shuffle product $u \sqcup v$ is defined on T(A) as follows

- $u \sqcup e = e \sqcup u = u$
- $au \sqcup bv = a(u \sqcup bv) + b(au \sqcup v).$

Functions on paths as real valued paths

DataSıg

Let $I \subset \mathbb{R}_+$ be a compact time interval and let $\gamma \in C^1(I, V)$ then we can define the historical path of γ in path space

 $u \in I \to \gamma|_{[a,u]}$

$$w(\gamma)_{u} = w\left(\gamma|_{[a,u]}\right)$$

Empty word goes to the path that is identically 1. For all other words the real valued path begins at zero. We can think of words as *sensors*.

Combining sensors

- Words are sensors that convert the path into a real number DataSig
- A letter w simply projects the path increment onto that channel

$$w(\gamma)_{v} := \int_{u=a}^{u=v} \langle w, d\gamma_{u} \rangle$$

 Suppose that σ and τ are two elements of the shuffle algebra then new sensors are

$$(\sigma \prec \tau)()_{v} := \int_{u=\gamma^{-}}^{u=v} \tau()_{u} d\sigma()_{u}$$

area_A(σ, τ):= $\sigma \prec \tau - \tau \prec \sigma$

• Remarkably both of these operation can be expressed in pure algebra as operations in the shuffle algebra.

The algebraic interpretation of integration

Definition

The left half shuffle \prec_A : $Sh(A) \times Sh(A) \rightarrow Sh(A)$ is a bi-linear form initially defined on basis elements: If u is the empty word e then $u \prec_A v := 0$. If u is nonempty, then let the letters in u be given by $u = u_1...u_n$ and define

$$u \prec_A v := u_1((u_2 \dots u_n) \sqcup v) \tag{2}$$

In particular, if u is a nonempty word then $u \prec_A e = u$.

Other trivial identities

• (FTC) Let $e \in Sh(A)$ be the empty word, then for any $x \in Sh(A)$

$$x \prec_A e = x - \langle x, e \rangle_A e$$
 Data(3)g

This is an algebraic version of the statement: $\int_0^1 1 df = f(.) - f(0)$.

• (Product Rule) It is easy to check from the definition of half shuffle that for any $x, y \in Sh(A)$ the following relation is satisfied

$$(x \sqcup y) \prec_A e = x \prec_A y + y \prec_A x \tag{4}$$

 (Integration by parts) Rewriting the left hand side in the product rule gives that for any $x, y \in Sh(A)$

$$x \sqcup y - \langle x, e \rangle_A \langle y, e \rangle_A e = x \prec_A y + y \prec_A x$$
(5)

• (Chain rule) It follows directly from the definition of \prec_A that for any $x, y, z \in Sh(A)$

$$x \prec_{A} (y \sqcup z) = (x \prec_{A} y) \prec_{A} z$$
(6)

• This is an algebraic version of the statement: $\int_{0}^{\cdot} fgdh = \int_{0}^{\cdot} fd(\int_{0}^{\cdot} gdh).$ Salvi... (NEMSA) Hall areas shuffle generate

Lemma (Shuffle-pullout identity)

For any triple x, y, $z \in Sh(A)$ the following relation is satisfied

 $3 \operatorname{area}_{A}(z, x \sqcup y) = x \sqcup \operatorname{area}_{A}(z, y) + y \sqcup \operatorname{area}_{A}(z, x) - x \sqcup y \sqcup z$ $+ \operatorname{area}_{A}(\operatorname{area}_{A}(z, y), x) + \operatorname{area}_{A}(\operatorname{area}_{A}(z, x), y)$

Lemma (Area-Jacobi identity)

For any triple x, y, $z \in Sh(A)$ the following relation is satisfied

 $area_A(area_A(x, y), z) + area_A(area_A(y, z), x) + area_A(area_A(z, x), y)$ = x \low area_A(y, z) + y \low area_A(z, x) + z \low area_A(x, y)

The computational magma

Definition

M(A) denotes the magma over A. M(A) is the minimal set satisfying $\forall a \in A, (a) \in M(A)$ and if $\tau', \tau'' \in M(A)$ then $(\tau', \tau'') \in M(A)$.

- [5] M(A) can be equivalently identified to the set of binary, planar, rooted trees with leaves labelled in A. For a given element $t \in M(A)$ we will refer to the ordered collection of letters appearing in its leaves as its foliage.
- *M*(*A*) is free. Any map from *A* to a space with a product extends uniquely to a map from *M*(*A*). (for example the foliage map, degree, multidegree).

Pure Foliage, Pure Areas and Pure Integrals

- $\operatorname{area}_A(z,x)$, $z \prec x$ are product operators on the shuffle algebra defined on letters by the identity map.
 - An element x of Sh(A) is a *pure area* if it is in the image under area_A of the magma. That is to say, there exists a tree $\tau \in M(A)$ so that $x = \operatorname{area}_{A}(\tau)$.
 - An element x of Sh(A) is a *pure integral* if it is in the image under \prec_A of the magma. That is to say, there exists a tree $\tau \in M(A)$ so that $x = \prec_A(\tau)$.

Theorem

[2, Corollary 5.6] Any element in Sh(A) can be written as a shuffle polynomial in pure areas {area_A(τ) | $\tau \in M(A)$ }.

Areas of shuffles

Theorem

For any $n \ge 1$ and any n pure areas A_1, \ldots, A_n and an additional pure area A, the following relation holds

$$\operatorname{area}_{A}(A, A_{1} \sqcup \ldots \sqcup A_{n}) = \beta_{n}A \sqcup \sqcup A_{1} \sqcup \ldots \sqcup A_{n} + Q$$

where $\beta_n = -(n-1)/(n+1)$, and Q is a shuffle polynomial in pure areas of shuffle-degree at most n.

Polynomials in areas span

Lets write a word as a polynomial in Hall words. If |w| > 0, w can be written as follows

$$w = av = a \prec_A v$$

where $v \in W_A$ is of word of length |v| = n - 1 and $a \in A \subset S(A)$ is a letter. Moreover for any elements of S(A)

$$a \prec_A v = \frac{1}{2} (\operatorname{area}_A(a, v) + a \sqcup v - \langle a, e \rangle \langle v, e \rangle e)$$
$$= \frac{1}{2} (\operatorname{area}_A(a, v) + a \sqcup v)$$

since *a* is a letter. The length of the word *v* is equal to n - 1, so by induction it can be written as a polynomial in pure areas of shuffle-degree n - 1. Hence, the term $a \sqcup v$ is a shuffle polynomial in pure areas of shuffle-degree *n*. By the area of shuffles, the term $\operatorname{area}_A(a, v)$ is also a polynomial in pure areas of shuffle-degree *n*, and so *w* a polynomial in pure areas of shuffle-degree *n*.

Salvi... (NEMSA)

Definition

A total order < on a sub-magma M is an ancestral order if for any tree $t = (t', t'') \in M(A)$ of degree ≥ 2 one has t < t''.

Definition

A sub-magma H of M(A) is a Hall set if

- < is an ancestral order on *H*.
- $A \subset H$.
- For any tree $h = (h_1, h_2) \in M(A)$ of degree ≥ 2 one has $h \in H$ if and only if:
 - $h_1, h_2 \in H \text{ and } h_1 < h_2$
 - either $h_1 \in A$ or $h_2 \leq h_1''$ where $h_1 = (h_1', h_1'')$.

Hall sets exist!

13/1/2021

18/28

Lemma

Hall sets exist, any ancestral order on the full magma leads in a canonical way to to a unique Hall set, and every Hall set can be obtained in this way.

Lemma

[5, corollary 4.14] The number of Hall trees of degree n and the dimension of the space of homogeneous Lie polynomials of degree n are equal to

$$\mathcal{D}_{H} = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}$$

where μ is the Mobius function.

Hall Words, Hall areas, Hall Integrals

- An element x of Sh(A) is a Hall area if it is in the image under area_A of the Hall set. That is to say, there exists a tree $h \in H \subset M(A)$ so that $x = \operatorname{area}_{A}(h)$.
- An element x of Sh(A) is a Hall integral if it is in the image under area_A of the Hall set. That is to say, there exists a tree $h \in H \subset M(A)$ so that $x = \prec_A(h)$.
- Hall words are defined similarly using the foliage map *f*

Decreasing sequences of hall words

Lemma

[5, Corollary 4.7] Every word $w \in W_A$ can be written uniquely as a decreasing product of Hall words

$$w = f(h_1)^{k_1} \dots f(h_n)^{k_n}, \quad h_i \in H, h_1 > \dots > h_n$$

Definition

If $h \in H$ then because [] is a binary operator one defines $[h] \in T(A)$ Consider the collection of all decreasing sequences $h_i \in H$, $h_1 > \ldots > h_n$ then $\{[h_1]^{k_1} \ldots [h_n]^{k_n}\}$ are the PBW basis for T(A).

・ロト ・回ト ・ヨト ・ヨト

Theorem

Consider all decreasing sequences $h_i \in H$, $h_1 > ... > h_n$, and strictly positive integers $k_i > 0$; then the elements

$$\frac{A_{h_1}^{k_1}\dots A_{h_n}^{k_n}}{k_1!\dots k_n!} (\prec_A (h_1))^{\bigsqcup k_1} \sqcup \dots \sqcup (\prec_A (h_n))^{\bigsqcup k_n}$$

are the dual basis in Sh(A) to the PBW basis $\{[h_1]^{k_1} \dots [h_n]^{k_n}\}$ for T(A). Every element of Sh(A) is uniquely expressible as a shuffle polynomial in Hall integrals. A_{h_1} is the accumulated Lazard depth of h.

Definition

If $h = (xh''^k)$ is the Lazard decomposition of $h \in H$, where $x = (x', x''), h'' \in H$ and $x'' \neq h''$, then we define the Lazard depth α_h of h to be 1/k. The accumulated Lazard depth of h is defined recursively: $A_h = 1$ if $h \in A$, otherwise h = (h', h'') and $A_h = \alpha_h A_{h'} A_{h''}$.

Any sensor is a polynomial in Hall Areas

Definition

A shuffle-polynomial in Hall areas is a linear combination of terms of the form

area_A
$$(h_1) \sqcup \ldots \sqcup$$
 area_A $(h_n), \quad h_i \in H.$ (7)

Theorem

Any element in Sh(A) can be written uniquely as a shuffle-polynomial in Hall areas {area_A(h) | $h \in H$ }.

Proof ideas

Definition

Given X we define

- *M*(X) the free magma
 - T((X)) the tensor algebra of infinite tensor series
 - L(X) the free Lie sub-algebra of T(X)
 - W_X the space of words in the alphabet X and a canonical basis for T(X)
 - Sh(X) the dual space to T((X))
 - W_X^* the dual basis to W_X
 - \prec_X , area_X, \langle , \rangle_X the various products on these spaces

Now consider a particular choice of X based on a lower central series decomposition of L(A).

DataSıg

• Let *c* be the greatest element of *A* with respect to the ancestral ordering <. Define the subset of trees

$$X = \{(ac^n), a \in A \setminus \{c\}, n \ge 0\} \subset M(A)$$
(8)

- A treacherous path implications in Shuffles are contravariant.
- L(X) is a Lie ideal and sub-algebra of co-dimension one in L(A)

Lemma

[5, Theorem 0.6] The Lie algebra L(A) is the semi-direct product of L(X) and $\mathbb{R}c$

$$L(A) = L(X) \ltimes \mathbb{R}c \tag{9}$$

Elimination trick

Theorem

For any magma M(A), ancestral ordering <, Hall set H on M(A), and any Hall tree $h \in H$ there exists a unique collection of Hall trees $h_1, \ldots, h_n \in H$ with the same multidegree as h and scalars $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\prec_{A} (h) = \sum_{i=1}^{n} \alpha_{i} \operatorname{area}_{A}(h_{i}) + P$$
 (10)

where P is a shuffle polynomial in areas of Hall trees $s \in H$. Moreover each monomial in this sum is a (shuffle) product of two or more Hall areas and has a net A-multidegree equal to the A-multidegree of h; in particular every Hall tree defining the Hall areas in P has A-degree strictly less than the A-degree of h.

Lemma

Any element of Sh(A) is a polynomial on the vector space that is the free Lie algebra L(A)

Proof

Recall that $L(A) \subset T(A)$ and that we can take exponentials to get the grouplike elements or signatures. $S \in T^n(A)$ is a truncated signature if and only if for some $l \in L^n(A)$ one has $S = \exp l$. If x is a word we may consider the coordinate iterated integral $\langle x, S \rangle$ as a real valued function on the signatures. Choose a basis l_i to L(A) that is homogeneous. Then

$$\left< x, \exp \sum \lambda_i l_i \right>$$

is, by expanding the exponential and stopping at an appropriate degree, a finite polynomial in λ_i .

Linear Polynomials

If *V* is a vector space and x_i are an ordered basis for V^* then every polynomial P(v) on *V* is a unique linear combination of decreasing products of products of $x_i(v)$. So it is tempting to think that the $\langle \prec_A(h), \exp \sum \lambda_i l_i \rangle$ are linear functions on the λ and that they are idependent. But they are not linear!

Example

Any polynomial function on \mathbb{R}^2 can be uniquely written as a polynomial in *x*, $y + x^2$

Problem

What are the linear polynomials on L (A)? Define $M \subset Sh(A)$ by

$$M := \left\{ x \mid \forall l, l' \in L(A), \quad \left\langle x, \exp\left(l + l'\right) - \left(\exp\left(l\right) + \exp\left(l'\right)\right) \right\rangle = 0 \right\}$$

At least $A \subset M$. Can we identify M, find a basis for M that is treelike, local.

Salvi... (NEMSA)

Thank You

Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature of a rough path: uniqueness. Advances in Mathematics 293, 720–737 (2016).

Joscha Diehl, Terry Lyons, Rosa Preiß, and Jeremy Reizenstein. Areas of areas generate the shuffle algebra. arXiv preprint arXiv:2002.02338 (2020).

- Ben Hambly and Terry Lyons. Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics pages 109–167 (2010).
- Terry J Lyons.

Differential equations driven by rough signals. *Revista Matemática Iberoamericana* **14**(2), 215–310 (1998).

C Reutenauer.

"Free Lie Algebras".

London Mathematical Society Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press (1993).

イロト イ団ト イヨト イヨト