Structure theorems for streamed information

https://www.datasig.ac.uk
Cris Salvi, Joscha Diehl, Terry Lyons, Rosa Preiß, and Jeremy Reizenstein

A rough path between
mathematics and data science

The
Alan Turing Institute

Framing assumptions for this talk

- on some very fine scale, most instances of streamed information can be conceptually modelled as (rough) path segments $\gamma_{u}, u \in[s, t]$
- we are interested in such streams because of their potential effects and applications, in addition to their value at any given time
- Unparameterized path segments are a real-world data type the signature of a path transforms a path segment γ in the Banach space V into a sequence of tensors within the algebra $T((V))$. This non-commutative exponential is obtained by evaluating the solution S_{t} of the controlled differential equation $d S_{u}=S_{u} \otimes d \gamma_{u}, S_{s}=1$. the signature of a path characterises a path up to a generalised re-parameterization (treelike equivalence) [3], [1]. We call the set of unparameterized paths $\Omega(V)$. The signatures of unparameterized paths form a subgroup G of the grouplike elements in $T((V))$. Each path has a unique tree reduced and unparameterised representative.

The fundamental questions

The signature representation filters out a symmetry made more powerful because we can answer the basic questions

- Understanding the spaces of functions on G.
- Give structure to the space of "polynomial" functions on G. However, the signature is big, and does not directly offer a way of describing the data that is scalable and localisable. Logsignature there is a hall basis, but the coefficients are global -change the basis elsewhere and you change the coefficients here.

Explicit algebraic bases

- Evaluating a function on a particular stream has a cost. After albit involves testing the stream γ in some way.
- Having evaluated $f(\gamma)$ and $g(\gamma)$ the cost of additionally evaluating $f(\gamma) g(\gamma)$ is a scalar multiplication without reference to the stream γ.
- Identifying an algebraic basis splits the process of evaluating a "polynomial" function on G into two parts:
- evaluating the basis sensors on the underlying data γ and then
- evaluating a unique polynomial function in these expensive but informative precomputed values
- Moreover if the bases are defined hierarchically using Hall sets, they can be computed recursively in a localised way (to compute one, one must compute its ancestors but not others).

The results in this work

- give a direct proof of [2]: polynomials in pure areas generate the shuffle algebra
- prove that polynomials in Hall integrals uniquely generate the shuffle algebra
- prove that polynomials in Hall areas uniquely generate the shuffle algebra
These results are fundamental structure theorems for streamed information. Polynomial functions split uniquely into two components -
- a first that engages with the underlying stream and which is potentially evaluated via some "physical" integration process that responds to the underlying signal
- is intrinsically nasty operator
- controlled differential equations are not closable in the uniform topology on γ - see [4]
- and a second that is a robust and continuous numerical polynomial evaluation made without reference to the stream.

Words as functions on paths

If A is an alphabet of d letters, then the tensor algebra is the space spanned by words

$$
T((A))=\mathbb{R} \oplus V\langle A\rangle \oplus V\langle A\rangle^{\otimes 2} \oplus \ldots
$$

Definition

Let $I \subset \mathbb{R}_{+}$be a compact time interval and let $\gamma \in C^{1}(I, V)$ be a continuous path of bounded variation. For any sub-interval $[a, b] \in I$ define the signature $\operatorname{Sig}(\gamma)_{[a, b]}$ of the path γ over $[a, b]$ as the following element of $T(V)$

$$
\begin{aligned}
\operatorname{sig}\left(\left.\gamma\right|_{[a, b]}\right) & =1+\sum_{k=1}^{\infty} \int_{a<t_{1}<\cdots<t_{n}<b} \ldots \int_{t_{1}} \otimes \ldots \otimes d \gamma_{t_{n}} \\
w\left(\left.\gamma\right|_{[a, b]}\right) & \left.=\int_{a<t_{1}<\cdots<t_{n}<b} \ldots w_{1}, d \gamma_{t_{1}}\right\rangle \otimes \ldots \otimes\left\langle w_{n}, d \gamma_{t_{n}}\right\rangle
\end{aligned}
$$

Products and shuffles

These words span an algebra of real functions on path segments (the shuffle algebra) that contains the constants and separates paths (that are distinct modulo paramterisation)

$$
\begin{equation*}
\langle f Ш g, x\rangle=\langle f, x\rangle\langle g, x\rangle \tag{1}
\end{equation*}
$$

Definition

Let u and v be words in W_{A} then the shuffle product $u \amalg v$ is defined on $T(A)$ as follows

- $u ш e=e ш u=u$
- $a u ш b v=a(u ш b v)+b(a u \amalg v)$.

Functions on paths as real valued paths

Let $I \subset \mathbb{R}_{+}$be a compact time interval and let $\gamma \in C^{1}(I, V)$ then we can define the historical path of γ in path space

$$
\begin{gathered}
\left.u \in I \rightarrow \gamma\right|_{[a, u]} \\
w(\gamma)_{u}=w\left(\left.\gamma\right|_{[a, u]}\right)
\end{gathered}
$$

Empty word goes to the path that is identically 1. For all other words the real valued path begins at zero. We can think of words as sensors.

Combining sensors

- Words are sensors that convert the path into a real number evolving in time.
- A letter w simply projects the path increment onto that channel

$$
w(\gamma)_{v}:=\int_{u=a}^{u=v}\left\langle w, d \gamma_{u}\right\rangle
$$

- Suppose that σ and τ are two elements of the shuffle algebra then new sensors are

$$
\begin{aligned}
&(\sigma \prec \tau)()_{v}: \\
& \operatorname{area}_{A}(\sigma, \tau): \\
&:=\sigma \prec \tau-\int_{u=\gamma^{-}}^{u=v} \tau()_{u} d \sigma()_{u} \\
& \prec \sigma \sigma
\end{aligned}
$$

- Remarkably both of these operation can be expressed in pure algebra as operations in the shuffle algebra.

The algebraic interpretation of integration

Definition

The left half shuffle \prec_{A} : $\operatorname{Sh}(A) \times \operatorname{Sh}(A) \rightarrow \operatorname{Sh}(A)$ is a bi-linear form initially defined on basis elements: If u is the empty word e then $u \prec_{A} v:=0$. If u is nonempty, then let the letters in u be given by $u=u_{1} \ldots u_{n}$ and define

$$
\begin{equation*}
u \prec_{A} v:=u_{1}\left(\left(u_{2} \ldots u_{n}\right) ш v\right) \tag{2}
\end{equation*}
$$

In particular, if u is a nonempty word then $u \prec_{A} e=u$.

Other trivial identities

- (FTC) Let $e \in \operatorname{Sh}(A)$ be the empty word, then for any $x \in \operatorname{Sh}(A)$

$$
\begin{equation*}
x \prec_{A} e=x-\langle x, e\rangle_{A} e \tag{3}
\end{equation*}
$$

This is an algebraic version of the statement: $\int_{0} 1 d f=f()-.f(0)$.

- (Product Rule) It is easy to check from the definition of half shuffle that for any $x, y \in \operatorname{Sh}(A)$ the following relation is satisfied

$$
\begin{equation*}
(x ш y) \prec_{A} e=x \prec_{A} y+y \prec_{A} x \tag{4}
\end{equation*}
$$

- (Integration by parts) Rewriting the left hand side in the product rule gives that for any $x, y \in \operatorname{Sh}(A)$

$$
\begin{equation*}
x ш y-\langle x, e\rangle_{A}\langle y, e\rangle_{A} e=x \prec_{A} y+y \prec_{A} x \tag{5}
\end{equation*}
$$

- (Chain rule) It follows directly from the definition of \prec_{A} that for any $x, y, z \in \operatorname{Sh}(A)$

$$
\begin{equation*}
x \prec_{A}(y ш z)=\left(x \prec_{A} y\right) \prec_{A} z \tag{6}
\end{equation*}
$$

- This is an algebraic version of the statement:
$\int_{0} f g d h=\int_{0} f d\left(\int_{0} g d h\right)$.

The Salvi identities

Lemma (Shuffle-pullout identity)

For any triple $x, y, z \in S h(A)$ the following relation is satisfied

$$
\begin{aligned}
3 \operatorname{area}_{A}(z, x ш y) & =x ш \operatorname{area}_{A}(z, y)+y ш \operatorname{area}_{A}(z, x)-x ш y ш z \\
& +\operatorname{area}_{A}\left(\operatorname{area}_{A}(z, y), x\right)+\operatorname{area}_{A}\left(\operatorname{area}_{A}(z, x), y\right)
\end{aligned}
$$

Lemma (Area-Jacobi identity)

For any triple $x, y, z \in \operatorname{Sh}(A)$ the following relation is satisfied

$$
\begin{aligned}
& \operatorname{area}_{A}\left(\operatorname{area}_{A}(x, y), z\right)+\operatorname{area}_{A}\left(\operatorname{area}_{A}(y, z), x\right)+\operatorname{area}_{A}\left(\operatorname{area}_{A}(z, x), y\right) \\
& =x \amalg \operatorname{area}_{A}(y, z)+y ш \operatorname{area}_{A}(z, x)+z ш \operatorname{area}_{A}(x, y)
\end{aligned}
$$

The computational magma

Definition

$M(A)$ denotes the magma over $A . M(A)$ is the minimal set satisfying $\forall a \in A,(a) \in M(A)$ and if $\tau^{\prime}, \tau^{\prime \prime} \in M(A)$ then $\left(\tau^{\prime}, \tau^{\prime \prime}\right) \in M(A)$.

- [5] $M(A)$ can be equivalently identified to the set of binary, planar, rooted trees with leaves labelled in A. For a given element $t \in M(A)$ we will refer to the ordered collection of letters appearing in its leaves as its foliage.
- $M(A)$ is free. Any map from A to a space with a product extends uniquely to a map from $M(A)$. (for example the foliage map, degree, multidegree).

Pure Foliage, Pure Areas and Pure Integrals

- $\operatorname{area}_{A}(z, x), z \prec x$ are product operators on the shuffle algebra defined on letters by the identity map.
- An element x of $\operatorname{Sh}(A)$ is a pure area if it is in the image under area A_{A} of the magma. That is to say, there exists a tree $\tau \in M(A)$ so that $x=\operatorname{area}_{A}(\tau)$.
- An element x of $S h(A)$ is a pure integral if it is in the image under \prec_{A} of the magma. That is to say, there exists a tree $\tau \in M(A)$ so that $x=\prec_{A}(\tau)$.

Theorem

[2, Corollary 5.6] Any element in $\operatorname{Sh}(A)$ can be written as a shuffle polynomial in pure areas $\left\{\operatorname{area}_{A}(\tau) \mid \tau \in M(A)\right\}$.

Areas of shuffles

Theorem

For any $n \geq 1$ and any n pure areas A_{1}, \ldots, A_{n} and an additional pure area A , the following relation holds

$$
\operatorname{area}_{A}\left(A, A_{1} \amalg \ldots \amalg A_{n}\right)=\beta_{n} A \amalg A_{1} \amalg \ldots \amalg A_{n}+Q
$$

where $\beta_{n}=-(n-1) /(n+1)$, and Q is a shuffle polynomial in pure areas of shuffle-degree at most n.

Polynomials in areas span

Lets write a word as a polynomial in Hall words. If $|w|>0$, wo can be written as follows

$$
w=a v=a \prec_{A} v
$$

where $v \in W_{A}$ is of word of length $|v|=n-1$ and $a \in A \subset S(A)$ is a letter. Moreover for any elements of $S(A)$

$$
\begin{aligned}
a \prec_{A} v & =\frac{1}{2}\left(\operatorname{area}_{A}(a, v)+a \amalg v-<a, e><v, e>e\right) \\
& =\frac{1}{2}\left(\operatorname{area}_{A}(a, v)+a \amalg v\right)
\end{aligned}
$$

since a is a letter. The length of the word v is equal to $n-1$, so by induction it can be written as a polynomial in pure areas of shuffle-degree $n-1$. Hence, the term $a \amalg v$ is a shuffle polynomial in pure areas of shuffle-degree n. By the area of shuffles, the term $\operatorname{area}_{A}(a, v)$ is also a polynomial in pure areas of shuffle-degree n, and so w a polynomial in pure areas of shuffle-degree n.

Ancestral orders and Hall sets

Definition

A total order < on a sub-magma M is an ancestral order if for any tree $t=\left(t^{\prime}, t^{\prime \prime}\right) \in M(A)$ of degree ≥ 2 one has $t<t^{\prime \prime}$.

Definition

A sub-magma H of $M(A)$ is a Hall set if

- < is an ancestral order on H.
- $A \subset H$.
- For any tree $h=\left(h_{1}, h_{2}\right) \in M(A)$ of degree ≥ 2 one has $h \in H$ if and only if:
- $h_{1}, h_{2} \in H$ and $h_{1}<h_{2}$
- either $h_{1} \in A$ or $h_{2} \leq h_{1}^{\prime \prime}$ where $h_{1}=\left(h_{1}^{\prime}, h_{1}^{\prime \prime}\right)$.

Hall sets exist!

Hall sets exist

Lemma

Hall sets exist, any ancestral order on the full magma leads in a canonical way to to a unique Hall set, and every Hall set can be obtained in this way.

Lemma

[5, corollary 4.14] The number of Hall trees of degree n and the dimension of the space of homogeneous Lie polynomials of degree n are equal to

$$
\mathcal{D}_{H}=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is the Mobius function.

Hall Words, Hall areas, Hall Integrals

- An element x of $S h(A)$ is a Hall area if it is in the image under area A of the Hall set. That is to say, there exists a tree $h \in H \subset M(A)$ so that $x=\operatorname{area}_{A}(h)$.
- An element x of $\operatorname{Sh}(A)$ is a Hall integral if it is in the image under area $_{A}$ of the Hall set. That is to say, there exists a tree $h \in H \subset M(A)$ so that $x=\prec_{A}(h)$.
- Hall words are defined similarly using the foliage map f

Decreasing sequences of hall words

Lemma

[5, Corollary 4.7] Every word $w \in W_{A}$ can be written uniquely as a decreasing product of Hall words

$$
w=f\left(h_{1}\right)^{k_{1}} \ldots f\left(h_{n}\right)^{k_{n}}, \quad h_{i} \in H, h_{1}>\ldots>h_{n}
$$

Definition

If $h \in H$ then because [] is a binary operator one defines $[h] \in T(A)$
Consider the collection of all decreasing sequences $h_{i} \in H$, $h_{1}>\ldots>h_{n}$ then $\left\{\left[h_{1}\right]^{k_{1}} \ldots\left[h_{n}\right]^{k_{n}}\right\}$ are the PBW basis for $T(A)$.

A shuffle basis from hall integrals

Theorem

Consider all decreasing sequences $h_{i} \in H, h_{1}>\ldots>h_{n}$, and strictly positive integers $k_{i}>0$; then the elements

$$
\frac{A_{h_{1}}^{k_{1}} \ldots A_{h_{n}}^{k_{n}}}{k_{1}!\ldots k_{n}!}\left(\prec_{A}\left(h_{1}\right)\right)^{\amalg k_{1}} ш \ldots \amalg\left(\prec_{A}\left(h_{n}\right)\right)^{\amalg k_{n}}
$$

are the dual basis in $\operatorname{Sh}(A)$ to the PBW basis $\left\{\left[h_{1}\right]^{k_{1}} \ldots\left[h_{n}\right]^{k_{n}}\right\}$ for $T(A)$. Every element of $\operatorname{Sh}(A)$ is uniquely expressible as a shuffle polynomial in Hall integrals. $A_{h_{1}}$ is the accumulated Lazard depth of h.

Definition

If $h=\left(x h^{\prime \prime k}\right)$ is the Lazard decomposition of $h \in H$, where $x=\left(x^{\prime}, x^{\prime \prime}\right), h^{\prime \prime} \in H$ and $x^{\prime \prime} \neq h^{\prime \prime}$, then we define the Lazard depth α_{h} of h to be $1 / k$. The accumulated Lazard depth of h is defined recursively: $A_{h}=1$ if $h \in A$, otherwise $h=\left(h^{\prime}, h^{\prime \prime}\right)$ and $A_{h}=\alpha_{h} A_{h^{\prime}} A_{h^{\prime \prime}}$.

Any sensor is a polynomial in Hall Areas

Definition

A shuffle-polynomial in Hall areas is a linear combination of terms of the form

$$
\begin{equation*}
\operatorname{area}_{A}\left(h_{1}\right) ш \ldots ш \operatorname{area}_{A}\left(h_{n}\right), \quad h_{i} \in H \tag{7}
\end{equation*}
$$

Theorem

Any element in $\operatorname{Sh}(A)$ can be written uniquely as a shuffle-polynomial in Hall areas $\left\{\operatorname{area}_{A}(h) \mid h \in H\right\}$.

Proof ideas

Definition

Given X we define

- - $M(X)$ the free magma
- $T((X))$ the tensor algebra of infinite tensor series
- $L(X)$ the free Lie sub-algebra of $T(X)$
- W_{X} the space of words in the alphabet X and a canonical basis for $T(X)$
- $\operatorname{Sh}(X)$ the dual space to $T((X))$
- W_{X}^{*} the dual basis to W_{X}
- \prec_{x}, areax,\langle,\rangle_{x} the various products on these spaces

Now consider a particular choice of X based on a lower central series decomposition of $L(A)$.

Elimination trick

- Let c be the greatest element of A with respect to the ancestral ordering $<$. Define the subset of trees

$$
\begin{equation*}
X=\left\{\left(a c^{n}\right), a \in A \backslash\{c\}, n \geq 0\right\} \subset M(A) \tag{8}
\end{equation*}
$$

- A treacherous path - implications in Shuffles are contravariant.
- $L(X)$ is a Lie ideal and sub-algebra of co-dimension one in $L(A)$

Lemma

[5, Theorem 0.6] The Lie algebra $L(A)$ is the semi-direct product of $L(X)$ and $\mathbb{R} c$

$$
\begin{equation*}
L(A)=L(X) \ltimes \mathbb{R} c \tag{9}
\end{equation*}
$$

The Main Result

Theorem

For any magma $M(A)$, ancestral ordering $<$, Hall set H on $M(A)$, and any Hall tree $h \in H$ there exists a unique collection of Hall trees $h_{1}, \ldots, h_{n} \in H$ with the same multidegree as h and scalars $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that

$$
\begin{equation*}
\prec_{A}(h)=\sum_{i=1}^{n} \alpha_{i} \operatorname{area}_{A}\left(h_{i}\right)+P \tag{10}
\end{equation*}
$$

where P is a shuffle polynomial in areas of Hall trees $s \in H$. Moreover each monomial in this sum is a (shuffle) product of two or more Hall areas and has a net A-multidegree equal to the A-multidegree of h; in particular every Hall tree defining the Hall areas in P has A-degree strictly less than the A-degree of h.

A shuffle basis - more abstraction

Lemma

Any element of $\operatorname{Sh}(A)$ is a polynomial on the vector space that is the free Lie algebra L (A)

Proof

Recall that $L(A) \subset T(A)$ and that we can take exponentials to get the grouplike elements or signatures. $S \in T^{n}(A)$ is a truncated signature if and only if for some $l \in L^{n}(A)$ one has $S=\exp l$. If x is a word we may consider the coordinate iterated integral $\langle x, S\rangle$ as a real valued function on the signatures. Choose a basis l_{i} to $L(A)$ that is homogeneous. Then

$$
\left\langle x, \exp \sum \lambda_{i} l_{i}\right\rangle
$$

is, by expanding the exponential and stopping at an appropriate degree, a finite polynomial in λ_{i}.

Linear Polynomials

If V is a vector space and x_{i} are an ordered basis for V^{*} then every polynomial $P(v)$ on V is a unique linear combination of decreasing products of products of $x_{i}(v)$. So it is tempting to think that the $\left\langle\prec_{A}(h), \exp \sum \lambda_{i} l_{i}\right\rangle$ are linear functions on the λ and that they are idependent. But they are not linear!

Example

Any polynomial function on \mathbb{R}^{2} can be uniquely written as a polynomial in $x, y+x^{2}$

Problem

What are the linear polynomials on $L(A)$? Define $M \subset S h(A)$ by

$$
M:=\left\{x \mid \forall l, l^{\prime} \in L(A), \quad\left\langle x, \exp \left(l+l^{\prime}\right)-\left(\exp (l)+\exp \left(l^{\prime}\right)\right)\right\rangle=0\right\}
$$

At least $A \subset M$. Can we identify M, find a basis for M that is treelike, local.

Thank You

E Horatio Boedihardjo，Xi Geng，Terry Lyons，and Danyu Yang．
The signature of a rough path：uniqueness．
Advances in Mathematics 293，720－737（2016）．
围 Joscha Diehl，Terry Lyons，Rosa Preiß，and Jeremy Reizenstein．
Areas of areas generate the shuffle algebra．
arXiv preprint arXiv：2002．02338（2020）．
國 Ben Hambly and Terry Lyons．
Uniqueness for the signature of a path of bounded variation and the reduced path group．
Annals of Mathematics pages 109－167（2010）．
䍰 Terry J Lyons．
Differential equations driven by rough signals．
Revista Matemática Iberoamericana 14（2），215－310（1998）．
（ C Reutenauer．
＂Free Lie Algebras＂．
London Mathematical Society Monographs．Oxford Science Publications，The Clarendon Press， Oxford University Press（1993）．

