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We channel our research around developing
the mathematics needed to model and
understand complex streams of non-
stationary multimodal data. We build
prototypes that have real world value to
develop this understanding. This is only
possible because of significant collaboration
and partnership.
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A public domain collaboration on detecting malware
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Mathematics
* rough path theory and signatures
* describing the interactions between complex systems from the top down

* extending the calculus of differential equations to complex contexts

Data science

* the notion of an unparameterized path captured by the order of events

* clean and minimal universal feature sets - (expected) signature

* the notion of a neural controlled differential equation

* the notion of a pde-kernel

a principled mathematical framework that allows further innovation (e.g. simulation)

Embedded contexts
* streamed data is everywhere; Chinese handwriting, hospital wards, event logs ...
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Streamed data

* a character drawn on the screen of an iPhone
* an order book

* a piece of text

* progression through hospital record

e astronomical data

* video of a person moving

* an evolving stream of emotions

* |CU data to detect sepsis

* the evolving stock position in a supermarket or
computer switch

Ensembles of streamed data

* the event log of processes generated by malware
* the behaviour of crowds

* the evolution of cancer cell lines

Key questions

* understand what you have observed

* predict the distribution of what is happening next
* identify anomalies
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Data science does not like symmetry

Re-parameterisation is a huge
symmetry group

Multimodal streams modulo re-
parameterisation form a group

Representing this group in the
tensor algebra provides a faithful
feature set and removes the
symmetry

Drawn from old mathematics, new
tools, sighature and log signature,
and new maths describing the
functions on streams
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Different sampling procedures K B;ftj;g
* The letter “3” isdrawn 10
from top to bottom
- The x coordinate of the
evolving symbol os{ |
sampled differently (at :'
uneven speeds) 041 |
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Different sampling procedures

The number “3” x, y coordinates — same picture drawn at two
different speeds

* no consistent wavelets
* reparameterisations do not form a linear space!
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Different sampling procedures

The letter “3” is drawn
from top to bottom

How does one describe
the three or any path
modulo the symmetry
of parametrisation?

=

10 -

0.8 1

0.6 -

0.4 -

0.2 -

0.0 -

tv v

mathematics and data science

—

0.0 0.2

04

0.6

0.8

10

11



The signature of a path describes
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Signature is a top down description for unparameterised paths
that describes a path segment through its effects of stylised
nonlinear systems

dS =S5 Q dy

It filters out the infinite dimensional noise of resampling

allowing prediction and classification with much smaller
learning sets.

It gives fixed dimensional feature sets regardless of the
sample points.*

missing data/varying parameterisation not issues although inadequacy of sampling may be
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The signature of a stream y over I = [s, t] defined by }.7—, Sk
where S5 = 1 and

Sy, 1) = f j AYy, AV, - AVy,

S<U<---<Up<t

These “Fourier-like” features exactly describe the unparameterised stream
(Hambly Lyons Annals Math 2010) up to appropriate null sets.

Projected controlled differential equations are universal models
<e,Y; >where dY, = f(Y,)dX,
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algebras

Signature leads to linear space of real
valued sensors (e|S;) on streams

Pointwise multiplication and
integration of these functionals

(aly) (Bly) =(a U Bly)
[{aly) d{Bly) = {(a < Bly)

can usefully be described in purely
algebraic language.

The log signature is structurally
Important.
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* The Signature is a faithful e
embedding of the unparametrized <<z 7955 %:
stream into a vector space e oy

* Continuous functions on streams 5%
can be well approximated by 2
linear functionals on signatures

 The Expected Signature describes
the ensemble of paths

* The log-signature describes paths
without redundancy

* There is a natural pde kernel
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* Let be x,y be unparametrized paths in H
and consider the bilinear form K (x, y) := Ty e
(S(x),S(y)). Franz J. Kiraly, Harald R
Oberhauser; JMLR 20(31):1-45, 2019 N 5

gave a kernel trick for the tangent kernel xff
for the truncated signature embedding. ¥~

e Salvi et al. then identified the Goursat
pde as the kernel trick for the untrucated
kernel and gave analytic sense for it even
for rough paths:

62K(xl[u ,u]'yl[v ,v]) ..
azcav ; - <x’ y> K(xl[uo,u]» yl [770;77])
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Recovering the curves from the signature

Weixin Yang,
Jaiwei Chang
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Our data
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Fig. 1. Visual representation of selected channels of one single streaming tree. Each plot represents the evolution in time of the value of a given channel of

the streaming tree, on its various branches. A red dot indicates a point where the currently-tracked process sets off a child process, causing the tree to branch.
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Paths or Signatures?
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Long/short vessel DataSig
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Vessel length 14.8m Vessel length 18.3m Vessel length 19.1m Vessel length 22.9m Vessel length 23.1m
Stream length: 114.0km Stream length: 788.4km Stream length: 382.6km Stream length: 415.1km Stream length: 85.9km
Number of points: 1571 Number of points: 1559 Number of points: 1536 Number of points: 1580 Number of points: 118

* The vectorisation of

1 38.52 27.70- 25.4 1 s

unparametrized streams 7%
3850 £ 2765 £ 25.3 £ 416 £
11 — 38.48 | IS — 2521 3 5 26.80
allows efficient use of o
o e® a2 a®al 0F 0O 2 8 0% 40°
L el gl ~°" SO - - - - -

many standard methods. SBET e

* For example, anomaly
d ete Ct i O n Ca n be Vessel length 128.8m  Vessel length 142.8m  Vessel length 186.4m  Vessel length 189.8m  Vessel length 229.2m

Stream length: 227.4km Stream length: 84.1km Stream length: 696.4km Stream length: 749.8km Stream length: 617.3km
Number of points: 151  Number of points: 71  Number of points: 897 Number of points: 1177 Number of points: 422

successfully applied this |
to these real-world
shipping trajectories i e SR NP P R i
o 8 ’%o..“ ’.a;»,,fv L I L ’%';,ﬁ ’%0.0 o ’%QD
Longitude Longitude Longitude

example.



Neural Controlled
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Use controlled differential equations to model policies

Train a neural f so that

dy = f(y)dy,yo = a
Where a represents the current state and y determines the
policy. Allows learning counterfactuals.

Neural Rough Differential Equations for Long Time Series
https://arxiv.org/abs/2009.08295

James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, Terry Lyons
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Ensembles of paths
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Process tree example:

Expected signatures of clouds of paths

Developed a way to apply
expected signature techniques
by viewing processes as trees
evolving over time (eg the crop
yield prediction task).

Predicting the yield of wheat
crops over a region from the
longitudinal measurements of
climatic variables recorded
across different locations of the
region.

Eurostat dataset containing the
total annual regional yield of
wheat crops in mainland France
- divided in 22 administrative
regions - from 2015 to 2017.

RV VS
DataSig

Arough path between
mathematics and data science

for i in tqdm(range(NUM TRIALS)):
pwES = pathwiseExpectedSignatureTransform(order=2).

SpwES = SignatureTransform(order=3).fit transform(p

train, X test, y train, y test = train_test split

archcv(plpe, parameters, verbose=0, n

VM =\

gﬂlct(x test)




Process tree example:

Expected signatures of clouds of paths

Viewing a cloud of interacting paths
evolving over time as an expected
signature, it can be merged with other
channels, and the process repeated.
PDE kernels can manage dimension.
The crop yield prediction task matches
this model: AISTATS 2021
arxiv.org/pdf/2006.05805.pdf

The climatic measurements
(temperature, soil humidity and
precipitation) are extracted from the
GLDAS database (Rodell et al, 2004),
are recorded every 6 hours at a spatial
resolution of 0.25° x 0.25°, and their
number varies across regions. Add
regional policy information, etc.
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MSE  MAPE
238 2331
2.67  22.88
82  13.18
82  13.18
72 1255
65  12.34 g
.62  10.98

25

=
-
-



Process tree example:
Expected signatures of clouds of paths

Developed SK-tree structure to apply
standardised expected signature
techniques to host-based event logs, by
viewing processes as trees evolving over
time analysed as expected signatures
through a PDE kernel.
2102.07904.pdf (arxiv.org)

We demonstrate the SK-Tree
to detect malicious events on
a portion of the publicly
available DARPA OpTC
dataset, achieving an initial
AUROC score of 98% for a
supervised question.

SK-Tree malware detection ROC

1.04

o
o

ROC
evaluation of
the SK-Tree
binary
classifier on
the OpTC data

=
=

True Positive Rate
=
S

’/
0.04 ¥

Number of processes set off

e

ROC fold 0 {AUC = 0.95)
ROC fold 1 (AUC = 1.00)
ROC fold 2 (AUC = 1.00)
ROC fold 3 {AUC = 0.99)
ROC fold 4 (AUC = 0.99)

= Chance

Mean ROC (AUC = 0.98 £ 0.02)
+ 1 =td. dew.
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Landmark-based
action recognition

 To communicate our methodology,

—= and aside from our papers, with their
software we are constructing

notebooks with introductory -
examples of what we can do. g

\ People moving can easily be

anonymized to landmarks. It is a
static process. The moving stick
people still contain information.

Peter Foster has put together a Q
o simple notebook you can run that )

.'.'-.' |'|||'Ih '|'I||“||“ Il demonstrates viable approaches to
| rr ( it recognizing these actions that can be
’ H trained on small datasets.

https://www.datasig.ac.uk/examples

lﬂl | l"' |
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