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Time Series Problems

Speech recognition
Language processing
Network monitoring
Stock market prediction
Network monitoring

Video processing (gesture
recognition, tracking, etc.)

Biosignals monitoring
Signal processing

mostly solved

Spam detection
Let's go to Agral /
Buy VIAGRA .. ) $

Part-of-speech (POS) tagging
ADI  AD) NOUN VERS ADV

Colorless_green_ideas_sleep_furiously.

Named entity recognition (NER)
PERSON ORG 10¢

Einstein met with UN officials in Princeton |

Biosignal

v

e

making good progress

Sentiment analysis
Best roast chicken in San Francisco! ‘h

The waiter ignored us for 20 minutes. R;l
Coreference resolution

Carter told Mubarak he shouldn't run again

Word sense disambiguation (WSD)

| need new batteries for my mouse. ‘;:3‘

Parsing
| can see Alcatraz from the window!

Machine translation (MT)
F3ks EMEPEA TR,
The 13™ Shanghai International Film Festival. .

Information extraction (IE)

You're invited to our dinner May 2
party, Friday May 27 at 8:30 add

Information currently
being used
(ex. heart rate variability)

still really hard

Question answering (QA)

Q. How effective is ibuprofen in reducing
fever in patients with acute febrile iliness?

Paraphrase

XYZ acquired ABC yesterday
ABC has been taken over by XY2

Summarization
The Dowlonesisup.
_The S&P500 jumped |
Nouslnl E”(QS rose

Economy is
o ood

Dialog | whereis Citzen Kane playing in SF?
Q Castro Theatre at 7.30.00 -
__youwantaucket?

Accurate
diagnosis

Early
detection or
prediction

Hidden information

Getting
new insight




- Long Short-Term Memory

* Proposedin 1995 as an
improvement over vanilla RNNs

e “LSTM has become the most cited
neural network of the 20th century’

)

* Generally very successful on time
series data

Layer ComponentwiseCopy Concatenate

Legend: = P



- Limitations of the LSTM

* Verydifficult to train at large scales (e.g.,
for NLP)

« Cannot effectively parallelize training

- ‘Black box’ processing gives little insight
into behavior

- Sequences greater than 500-1000
samples cannot be effectively processed
In practice

MSE
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- Transformer

* Borrowed ‘attention’ from LSTM
work, makes time parallel

* Purely feedforward training,
leverages huge GPU farms

« By farthe dominant architecture
for NLP (Google, Amazon, Apple,

OpenAl, etc.)

ENCODER #1

( Add & Normalize
-+
. ( Feed Forward ) ( Feed Forward )
--------- | SEETTTISTT TP PTTTTTTY
,-»( Add & Normalize
]
' L)
! ( Self-Attention
S rrrrrr P T
POSITIONAL é é
ENCODING
x+ [ x2 [
Thinking Machines
Performance vs Parameters
— LSTM
—— Transformer L(N,S)
10°

10°

10°
Parameters (non-embedding)

OpenAl (2021)




A Neural Network



- The problem

Perfect continuous delay is an infinite dimensional problem

Time

* Infinite frequency content over any finite interval requires
infinite information preservation

Delay/Memory

W\/\/V\«/V\A/M




- The problem

Ideal continuous delay: y(t) = u(t —0)

S _
Or, in the Laplace domain: F(S) — _?yLES; =€ Os
Optimal finite
version?

Equivalently:  F'(s) = C(sI — A)_lB + D



- The solution

The best approximation of any function with a rational function of

order p/qis given by the Padé approximants

B,(—05s)
-0s _ =P
[p/qle - Bq(BS) ’

mom\ (p+q-i) ;
B,,(8):= ) s.
“ Zo(’) P+ q)!

Choosing p=qg-1, the state space becomes:

T
(—vo —vg —’UO\ B:(UO 0 .- O)
vi 0 .o 0
I )
\ 0 0 vy 0 ) Do

. (g+9)(g—1) p—1 e (_1)a—1—i [+l
vi = Sy 7, w; = (—1)7 (q)



- The solution

Our ‘Legendre Delay Network’ (LDN), is the optimal finite solution
to this infinite dimensional system

0x(t) = Ax(t) + Bu(r)

1.0-
— u(t)
0.51

0.0

Input / Output

—0.51

=1.0~

Decoded State




- The solution

We can then convert that LTI to a normalized form:

(=1) =+t > =0

(2i 4+ 1)(—1)° D=0, i,j€l0,d—1],
9 ?

B; =

Projecting this state space onto the shifted Legendre polynomials

s i (1) [(i+] - 0'
P; = (-1 )( ) )_ J:piz -1, =—,
(r) = ( ),-go(! j (—1) @r-n, r=-

Gives -
-1 (g
u(t—H')zZP,-(E)x,-(t), 0<6' <0.
i=0




- The solution: Examples

For g=6 this results in the following matrices

For g=1 this system is a first-order low pass

Shifted Legendre
Basis

-9
| 11

0.5
o 0.0

—0.51

—1.01

—3

-1

o =
-3 -3
-5 5
gale =]
-9 9
~11) | —11)

0.0

0.8

1.0



- The solution: Impulse response

Length of Curve
o ot



- The Legendre Memory Unit (LMU)

e The LMU has this linear system at Tht
the core of its architecture. , by
h; g >[ Nonlinear J
Wh A 1
] IWi fWo
 This provides state-of-the-art A : my
. i ~( Linear_}-|——
performance and is parameter- lem . |
efficient h TB
> Uy
, Tex
« Neural Connection: Explains time

cells, dynamic, spiking (or not) | |Xt



Time Cells
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- Efficient and Accurate

MSE

10

103

10°

107’

10°°

Memory Capacity
‘A—"""‘ . LSTM
‘ ‘ g MU
1 10 1,000 100,000

Delay length (# Time steps)

Better accuracy with fewer parameters
means using less power.

The LMU with 500 parameters outperforms
LSTMs with 41,000 parameters.

LMUs are 1,000,000x more accurate while remembering 10,000x more data than LSTMs.



A State-of-the-art
Neural Network



- Benchmarks: SotA performance on psMNIST

Model Accuracy
Permuted, sequential MNIST is the standard RNN-orth 39.26
benchmark for all new RNNs RNN-id 86.13
LSTM 80.86
Simplified LMU holds with 98.49% LSTM-chrono  88.43
GRU 92.39
accuracy JANET 91.94
LMU uses 60% f han all oth o 02:49
o Tfewer params than all other GORU 27 00
models NRU 05.38
Phased LSTM 89.61
LMU 97.15
HiPPO-LegS 08.3
FF-baseline 08.20

Simplified LMU ==



- Practical: SotA on Keyword Spotting

At the edge SVDF .@
97
.Q\D.SCNN LMU

96 - :\\CRNN(S)
/ \ GRU(S)

95 |
< CNN CNN+strd
— Google TinySpeech-A ®
>94-
©
-}
O 93
<

92

TinySpeech-B ®
91 DNN
s

0 102
Model Size (kbits)

Smaller X

LMU gives the most power efficient streaming KWS models.



- Practical: SotA on RF classification

* LMU has achieved 99.65% on ——
coax and 95.15% on OTA 3 KD RO .

 Coaxis 3xreduction in error -
* OTAIis 2x reduction in error .

N 100.00%

0 95.10%

« ~300K params (relatively small),
1 layer LMU

* Designedto run online
(no buffering as with convnet)

N 100.00%
N 100.00%
N 100.00%
0 99.13%
0 99.90%
1 N 100.00%

977  100.00%

* Designedtorun at the edge




- Scalable: SotA for Size and Accuracy

Natural language processing
* IMDB sentiment analysis (160x fewer params)
*  QQP semantic similarity (650x fewer params)
* SNLIinferential relations (60x fewer params)

Pre-training for IMDB
« LSTM Radford et al. (2017) and Transformer Sanh et al. (2019)

Model IMDB QQP SNLI Model # parameters (Millions)  Accuracy
LSTM 87.29  82.58/81.4 T7.6 L_ST.M 75 92.88
Our Model  89.10  86.95/85.36 78.85 DistIBERT 66 92.82

Our Model 34 93.20




B A New LMU Architecture for NLP

* Legendre Memory Unit

 Parallel training with Recurrent
Inference

* Implicit Self-Attention

« Use ‘implicit self-attention’ on
the hidden state at each time-

step

« Choose g’ << q exploiting LMU
compression

Input

FFN l

LMU

WV
Hidden State

Reshape and Project

N

Y

M
Implicit Self-Attention l
K

Q Vv

Project and FFN l

Output



- Scalable: SotA for Size and Accuracy

Fundamentally better scaling than transformers (OpenAl, 2021)

During learning and inference

Performance vs Parameters

5x10° 1

4x10° -

— LSTM
Tansformer L(N,S)
- LMU

- LMU + Attention

10°
Parameters (non-embedding)

10°

Model Compute Memory
Transformer | O(N?) O(N?)
LMU O(N) o(1)

| 50% fewer
parameters

N = sequence length




- Other applications

Biosignals analysis (e.g. R-peak detection,
arrythmia)
Network monitoring (SoTA on KDD99)

Anomaly detection (SOoTA on audio DCASE 2020
challenge)

Nonlinear dynamical system
prediction (SOTA on MacKey Glass)

Signal processing, e.g., instantaneous
signal propagation




- Other Bases

* You can use other bases, some have advantages (e.g. Mod Four O(N23))
* Analytic always better than learned (except random)

PSMNIST (q = 468; Nials = 101; Nepochs = 100)
= Fixed [0 Learned

0.988 |~ O

Better p»
1
1
O

0.986

|
4
:
£d
X
[X]
O

g 0.984 - 1 1
3 L O (@) O
g o 8 = 1
= 0.982 |
©

0.980 5 5

0.978 -

@)
O @ @] @] @] A A

LDN Mod. Fourier Fourier Cosine Haar DLOP Random
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Hardware: Al Time Series Processor

Ve °'\ Uses

° ° (

&%/ All time series data processing at the edge, including: ,
*“ - Edge Full ASR and NLP ‘\\
- Edge Sensor Data Processing " . .
=" Time Series |

Reduce edge and cloud costs Processor

Edge ASR and NLP cost reduces from >$50 down to
<$4 per chip

3

-€N- Saves energy
= Full ASR at <25 mW (vs ~5W), battery power loT

Replaces CPUs and GPUs at the edge
(3‘ Reduce data center comms and energy costs,

increase privacy and reduce latency
>108 reduction of data sent from edge, <60ms latency

27



- Further Information

Research, Papers
http://compneuro.uwaterloo.ca

Nengo software, Tutorials, Demo videos
http://nenqgo.ai

Applied Brain Research
http://appliedbrainresearch.com



http://nengo.ca/
http://appliedbrainresearch.com/
http://compneuro.uwaterloo.ca/

