

The Legendre Memory Unit A neural network with optimal time series compression

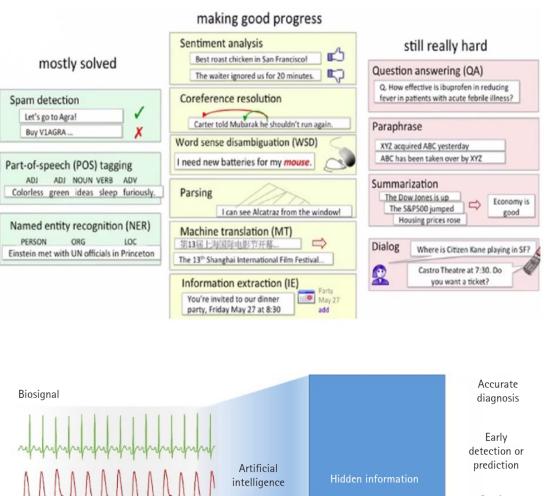
Chris Eliasmith

Centre for Theoretical Neuroscience University of Waterloo Applied Brain Research, Inc.

Time Series Al

Time Series Problems

- Speech recognition
- Language processing
- Network monitoring
- Stock market prediction
- Network monitoring
- Video processing (gesture recognition, tracking, etc.)
- Biosignals monitoring
- Signal processing

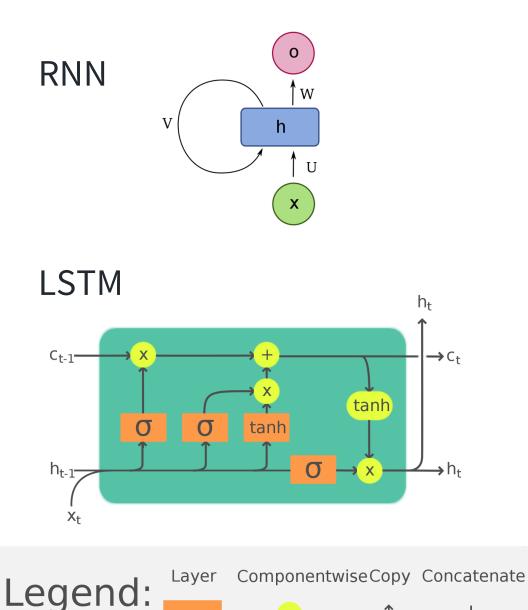


Human insight Getting new insight

Information currently being used (ex. heart rate variability)

Long Short-Term Memory

- Proposed in 1995 as an improvement over vanilla RNNs
- "LSTM has become the most cited neural network of the 20th century"
- Generally very successful on time series data

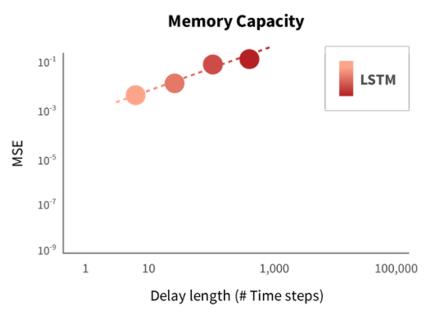


ht

 $\rightarrow C_{+}$

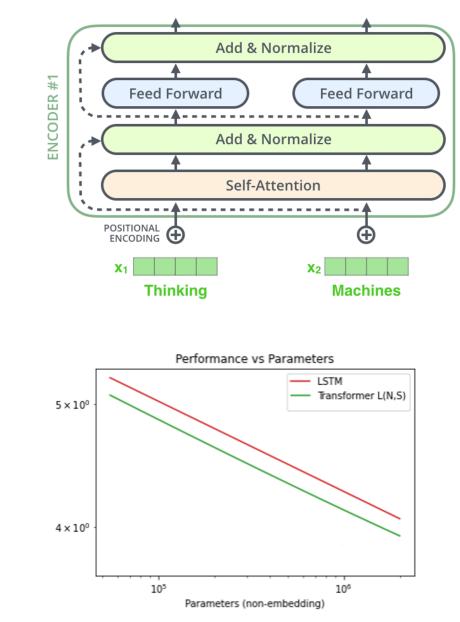
Limitations of the LSTM

- Very difficult to train at large scales (e.g., for NLP)
 - Cannot effectively parallelize training
- 'Black box' processing gives little insight into behavior
- Sequences greater than 500-1000 samples cannot be effectively processed in practice



Transformer

- Borrowed 'attention' from LSTM work, makes time parallel
- Purely **feedforward** training, leverages huge GPU farms
- By far the **dominant** architecture for NLP (Google, Amazon, Apple, OpenAI, etc.)



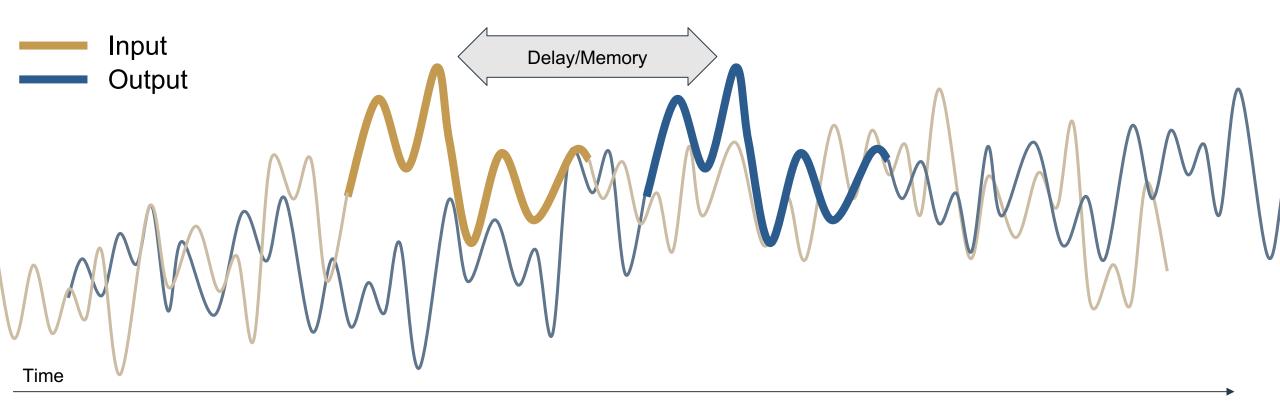
OpenAI (2021)

A New Neural Network

The problem

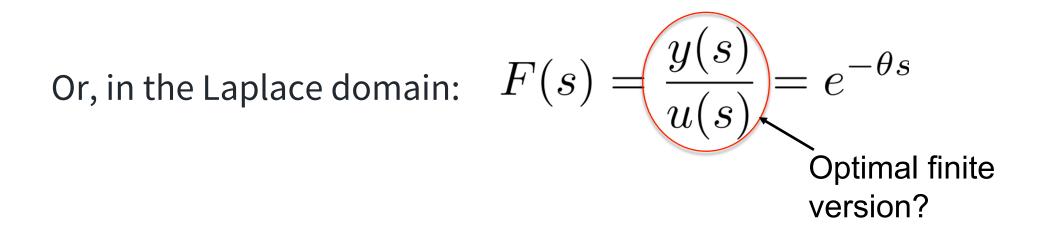
Perfect continuous delay is an **infinite dimensional** problem

• Infinite frequency content over any finite interval requires infinite information preservation



The problem

Ideal continuous delay: $y(t) = u(t - \theta)$



Equivalently:
$$F(s) = C(sI - A)^{-1}B + D$$

The solution

The best approximation of any function with a rational function of order p/q is given by the Padé approximants

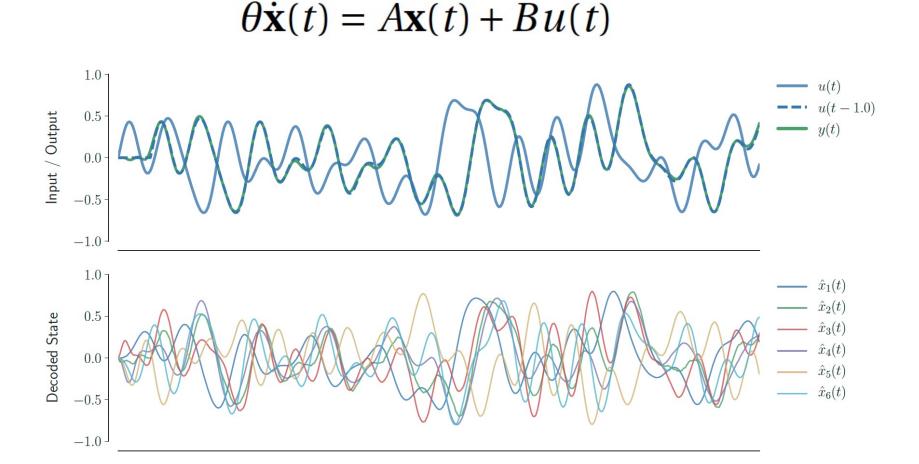
$$[p/q] e^{-\theta s} = \frac{\mathcal{B}_p(-\theta s)}{\mathcal{B}_q(\theta s)},$$
$$\mathcal{B}_m(s) := \sum_{i=0}^m \binom{m}{i} \frac{(p+q-i)!}{(p+q)!} s^i$$

Choosing p=q-1, the state space becomes:

$$A = \begin{pmatrix} -v_0 & -v_0 & \cdots & -v_0 \\ v_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 0 & 0 & v_{q-1} & 0 \end{pmatrix} \qquad B = \begin{pmatrix} v_0 & 0 & \cdots & 0 \end{pmatrix}^T \\ C = \begin{pmatrix} w_0 & w_1 & \cdots & w_{q-1} \end{pmatrix} \\ D = 0, \\ v_i := \frac{(q+i)(q-i)}{i+1} \theta^{-1} \qquad w_i := (-1)^{q-1-i} \left(\frac{i+1}{q}\right)$$

The solution

Our 'Legendre Delay Network' (LDN), is the **optimal finite solution** to this infinite dimensional system



The solution

We can then convert that LTI to a normalized form:

$$\begin{split} A_{i,j} &= \frac{(2i+1)}{\theta} \begin{cases} -1 & i < j \\ (-1)^{i-j+1} & i \ge j \end{cases} \\ B_i &= \frac{(2i+1)(-1)^i}{\theta}, \end{cases} \quad C_i = (-1)^i \sum_{l=0}^i \binom{i}{l} \binom{i+l}{j} (-1)^l, \\ D &= 0, \quad i, j \in [0, d-1], \end{split}$$

Projecting this state space onto the shifted Legendre polynomials

$$\tilde{\mathcal{P}}_i(r) = (-1)^i \sum_{j=0}^i \binom{i}{j} \binom{i+j}{j} (-r)^j = \mathcal{P}_i(2r-1), \quad r = \frac{\theta'}{\theta},$$

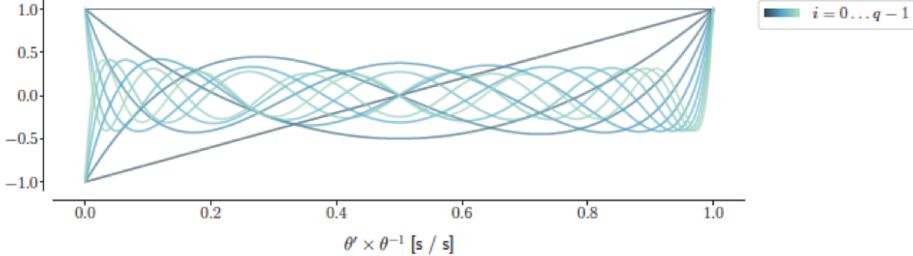
$$u(t-\theta')\approx \sum_{i=0}^{q-1}\tilde{\mathcal{P}}_i\left(\frac{\theta'}{\theta}\right)x_i(t), \quad 0\leq \theta'\leq \theta.$$

The solution: Examples

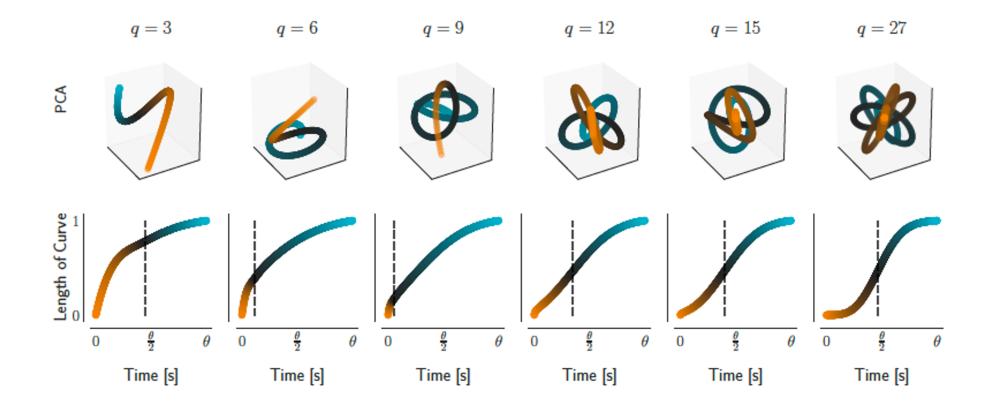
For q=6 this results in the following matrices

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 & -1 & -1 \\ 3 & -3 & -3 & -3 & -3 & -3 \\ -5 & 5 & -5 & -5 & -5 & -5 \\ 7 & -7 & 7 & -7 & -7 & -7 \\ -9 & 9 & -9 & 9 & -9 & -9 \\ 11 & -11 & 11 & -11 & 11 & -11 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ -3 \\ 5 \\ -7 \\ 9 \\ -11 \end{pmatrix}$$

For q=1 this system is a first-order low pass

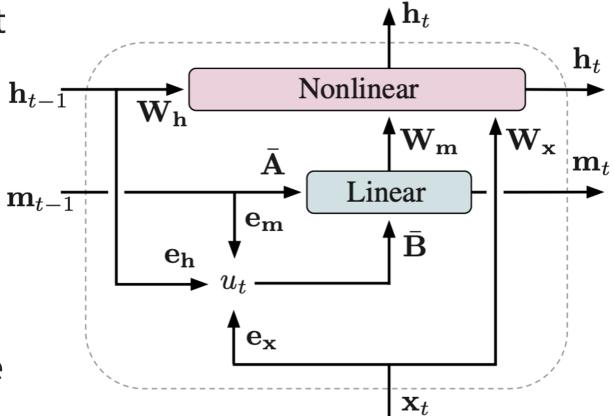


The solution: Impulse response

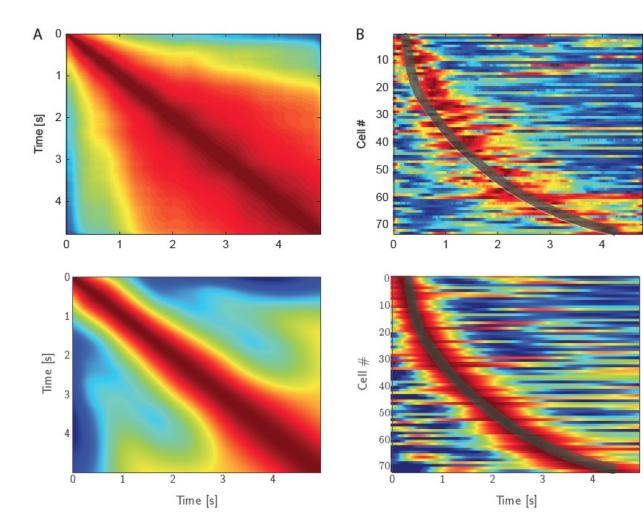


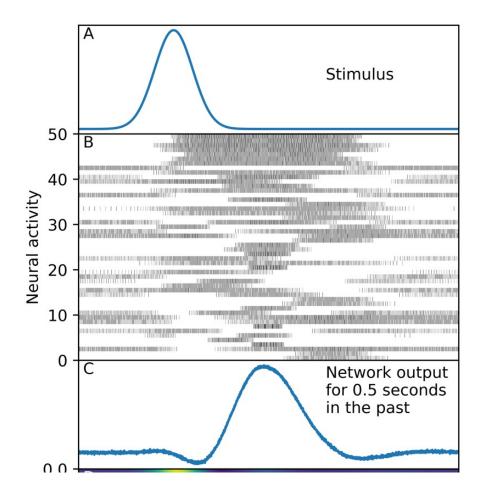
The Legendre Memory Unit (LMU)

- The **LMU** has this linear system at the core of its architecture.
- This provides state-of-the-art performance and is parameter-efficient
- Neural Connection: Explains time cells, dynamic, spiking (or not)

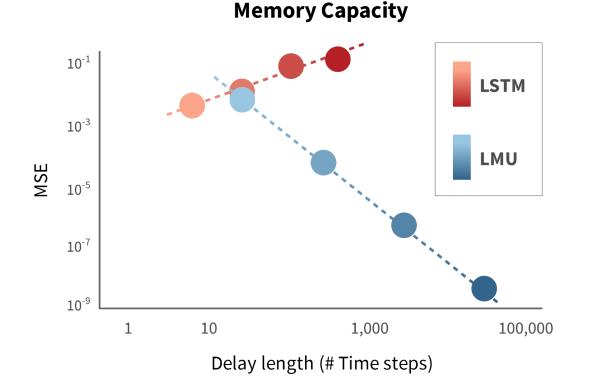


Time Cells





Efficient and Accurate



Better accuracy with fewer parameters means using less power.

The LMU with 500 parameters outperforms LSTMs with 41,000 parameters.

LMUs are 1,000,000x more accurate while remembering 10,000x more data than LSTMs.

A State-of-the-art Neural Network

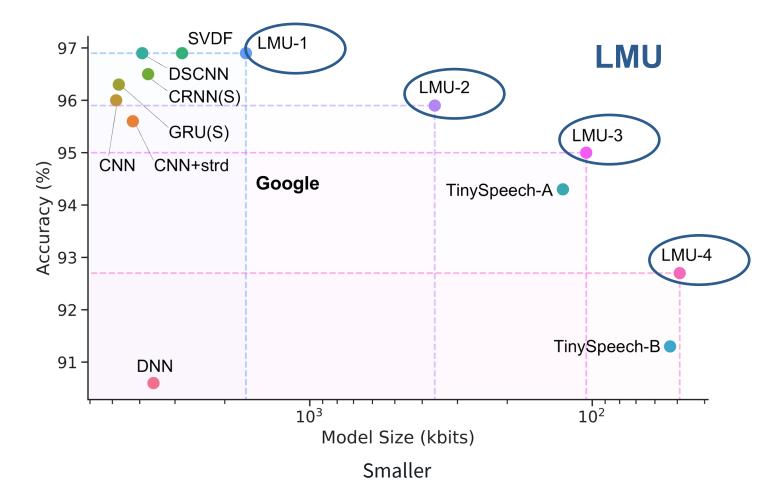
Benchmarks: SotA performance on psMNIST

Permuted, sequential MNIST is the standard
benchmark for all new RNNs
Simplified LMU holds SotA record with 98.49%
accuracy
LMU uses 60% fewer params than all other
models

Model	Accuracy
RNN-orth	89.26
RNN-id	86.13
LSTM	89.86
LSTM-chrono	88.43
GRU	92.39
JANET	91.94
SRU	92.49
GORU	87.00
NRU	95.38
Phased LSTM	89.61
LMU	97.15
HiPPO-LegS	98.3
FF-baseline	98.20
Our Model	98.49

Practical: SotA on Keyword Spotting

At the edge



LMU gives the most power efficient streaming KWS models.

Practical: SotA on RF classification

- LMU has achieved **99.65% on** coax and **95.15% on OTA**
- Coax is **3x** reduction in error
- OTA is **2x** reduction in error
- ~300K params (relatively small), 1 layer LMU
- Designed to run **online** (no buffering as with convnet)
- Designed to run at the **edge**

							c	oax_t	est (1	15000)			Ove	erall Ac	curac	y: 99.29%
	64QAM -	960	5														99.17%
	256QAM -	0	1013		15												98.54%
	16QAM -	13	3	949						6							97.73%
	128QAM -			0	1055												100.00%
	8PSK -				0	963											100.00%
	2FSK					0	978	0									99.90%
	32QAM -						0	971	0	0							100.00%
Actual	ASK -							0	970	0			50				95.10%
	pi4DQPSK -									1010	0						100.00%
	QPSK -									0	999	0	0				100.00%
	4FSK -											990	0				100.00%
	BPSK -												1020	0	0		99.13%
	8FSK -													978	0	0	99.90%
	MSK -														1061	0	100.00%
	NOISE -		0	0	0	0	0	0	0	0	0	0	0	0	0	977	100.00%
		6AOAM	2560AM	160AM	1280AM	885t	25st	320AM	st	plaDOPS*	OPST	arst .	885t	orst	WSt	NOISE	
					-				edicte	ed S							

Scalable: SotA for Size and Accuracy

Natural language processing

- IMDB sentiment analysis (160x fewer params)
- QQP semantic similarity (650x fewer params)
- SNLI inferential relations (60x fewer params)

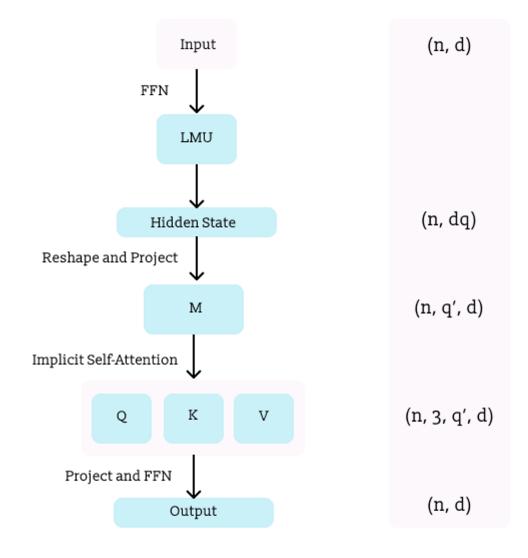
Pre-training for IMDB

• LSTM Radford et al. (2017) and Transformer Sanh et al. (2019)

lodel	IMDB	QQP	SNLI
1	87.29	82.58/81.4	77.6
odel	87.29 89.10	86.95/85.36	78.85
1	07.10	00.75/05.50	70.05

A New LMU Architecture for NLP

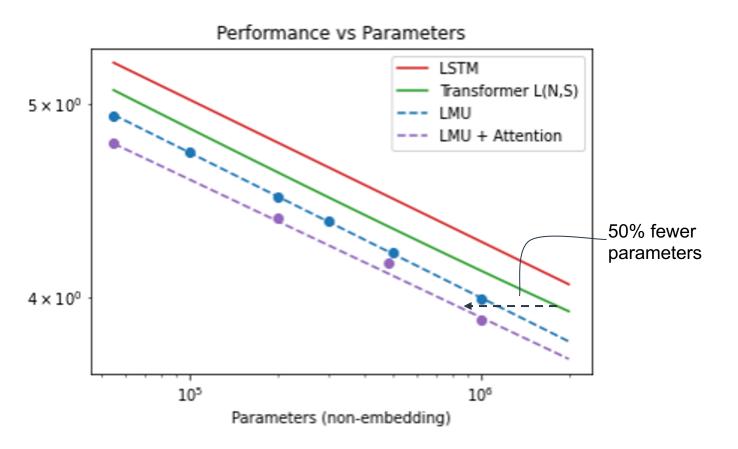
- Legendre Memory Unit
 - **Parallel training** with Recurrent Inference
 - Implicit Self-Attention
 - Use 'implicit self-attention' on the hidden state at each timestep
 - Choose q' << q exploiting LMU compression



Scalable: SotA for Size and Accuracy

Fundamentally better scaling than transformers (OpenAI, 2021)

• During learning and inference

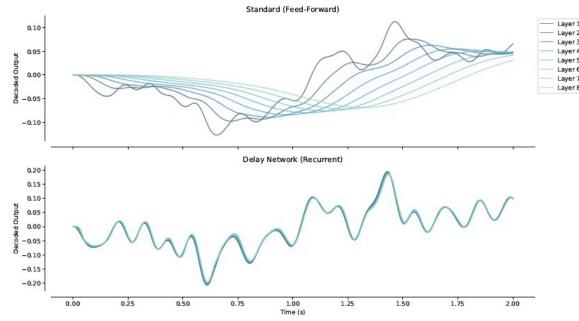


Model	Compute	Memory			
Transformer	O(N ²)	O(N ²)			
LMU	O(N)	O(1)			

N = sequence length

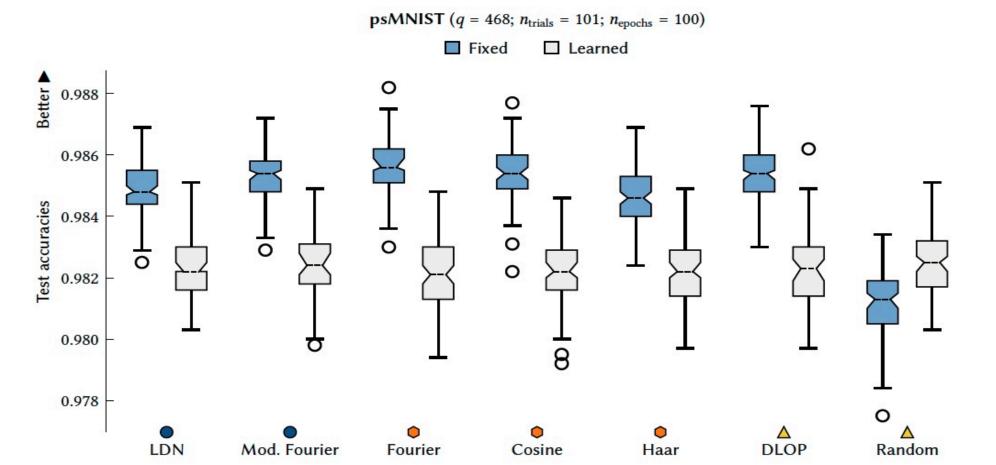
Other applications

- Biosignals analysis (e.g. R-peak detection, arrythmia)
- Network monitoring (SoTA on KDD99)
- Anomaly detection (SoTA on audio DCASE 2020 challenge)
- Nonlinear dynamical system prediction (SoTA on MacKey Glass)
- Signal processing, e.g., instantaneous signal propagation



Other Bases

- You can use other bases, some have advantages (e.g. Mod Four O(N^{2.3}))
- Analytic always better than learned (except random)



Hardware: AI Time Series Processor

Uses

All time series data processing at the edge, including: - Edge Full ASR and NLP

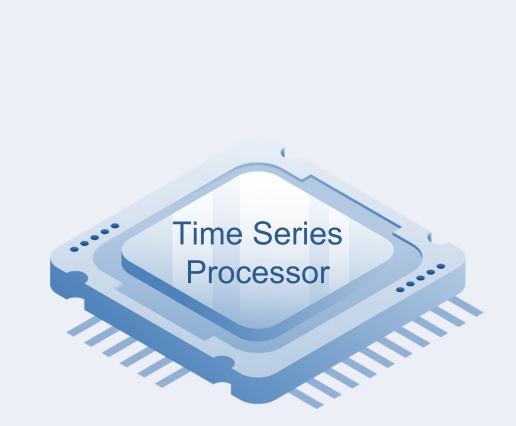
- Edge Sensor Data Processing

Reduce edge and cloud costs

Edge ASR and NLP cost reduces from >\$50 down to <\$4 per chip

Saves energy Full ASR at <25 mW (vs ~5W), battery power IoT

Reduce data center comms and energy costs, increase privacy and reduce latency >10⁶ reduction of data sent from edge, <60ms latency



Replaces CPUs and GPUs at the edge

Further Information

Research, Papers http://compneuro.uwaterloo.ca

Nengo software, Tutorials, Demo videos http://nengo.ai

Applied Brain Research http://appliedbrainresearch.com