Variational principles for fluid dynamics on rough paths

James-Michael Leahy
Department of Mathematics at Imperial College London and Applied Mathematics at University of Twente US Air Force Office of Scientific Research IOE Grant Dutch Research Council (NWO) SPReSto Grant Joint with Dan Crisan, Darryl Holm, and Torstein Nilssen

May 7th, 2020
DataSig Seminar Series

Outline

I. Variational principles in physics and fluid dynamics
II. Parametrization schemes for fluid dynamics
III. Notation
IV. The Lie chain rule
V. The Hamilton-Pontryagin principle
VI. Kelvin circulation theorem
VII. Incompressible Rough Euler
VIII. Solution properties of Euler's equations
IX. Future outlook

Lagrangian mechanics

- Let Q be a smooth configuration manifold and $L \in C^{1}(T Q ; \mathbb{R})$.

Lagrangian mechanics

- Let Q be a smooth configuration manifold and $L \in C^{1}(T Q ; \mathbb{R})$.
- Define the action functional $S: \Omega\left(q_{1}, q_{2}\right) \rightarrow \mathbb{R}$ by

$$
S(q)=\int_{a}^{b} L\left(q_{t}, \dot{q}_{t}\right) \mathrm{d} t
$$

where $\Omega\left(q_{1}, q_{2}\right)=\left\{q \in C^{2}([a, b] ; Q): q_{a}=q_{1}\right.$ and $\left.q_{b}=q_{2}\right\}$.

Lagrangian mechanics

- Let Q be a smooth configuration manifold and $L \in C^{1}(T Q ; \mathbb{R})$.
- Define the action functional $S: \Omega\left(q_{1}, q_{2}\right) \rightarrow \mathbb{R}$ by

$$
S(q)=\int_{a}^{b} L\left(q_{t}, \dot{q}_{t}\right) \mathrm{d} t
$$

where $\Omega\left(q_{1}, q_{2}\right)=\left\{q \in C^{2}([a, b] ; Q): q_{a}=q_{1}\right.$ and $\left.q_{b}=q_{2}\right\}$.

- We say $q \in \Omega\left(q_{1}, q_{2}\right)$ is a critical point of the action functional if for all 'variations' of q, that is, $\delta q=[c .]_{q} \in T_{q} \Omega\left(q_{1}, q_{2}\right)$,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} S\left(c_{\epsilon}\right)=\mathrm{d} S(q) \cdot \delta q=0
$$

In a local trivilialization chart of $T Q$,

$$
c_{\epsilon}(t)=q_{t}+\epsilon \delta q_{t}, \quad \text { with } \delta q \in C^{2}([a, b] ; Q), \quad \delta q_{a}=\delta q_{b}=0 .
$$

Hamilton's principle

Theorem

A curve q is a critical point of S iff in a local trivialization chart of $T Q$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\partial L}{\partial \dot{q}^{i}}(q, \dot{q})\right]=\frac{\partial L}{\partial q^{i}}(q, \dot{q}) .
$$

These equations are called the Euler-Lagrange equations. They are a system of second-order ODEs if $\frac{\partial L}{\partial \dot{q}^{i} \partial \dot{q}^{i}}$ has non-vanishing determinant.

Hamilton's principle

Theorem

A curve q is a critical point of S iff in a local trivialization chart of $T Q$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\partial L}{\partial \dot{q}^{i}}(q, \dot{q})\right]=\frac{\partial L}{\partial q^{i}}(q, \dot{q}) .
$$

These equations are called the Euler-Lagrange equations. They are a system of second-order ODEs if $\frac{\partial L}{\partial \dot{q}^{i} \partial \dot{q}^{i}}$ has non-vanishing determinant.

Proof.

Integrating by parts and using that $\delta q_{a}=\delta q_{b}=0$, we find

$$
\begin{aligned}
\mathrm{d} S \cdot \delta q & =\int_{a}^{b}\left(\frac{\partial L}{\partial q^{i}}(q, \dot{q}) \delta q^{i}+\frac{\partial L}{\partial \dot{q}^{i}}(q, \dot{q}) \frac{\mathrm{d}}{\mathrm{~d} t} \delta q^{i}\right) \mathrm{d} t \\
& =\int_{a}^{b}\left(\frac{\partial L}{\partial q^{i}}(q, \dot{q})-\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\partial L}{\partial \dot{q}^{i}}(q, \dot{q})\right]\right) \delta q^{i} \mathrm{~d} t
\end{aligned}
$$

Newtonian and Hamiltonian systems

- A Newtonian potential system of N point masses in \mathbb{R}^{d} is equivalent to the Euler-Lagrange equations with $Q=\mathbb{R}^{d N}, T Q=\mathbb{R}^{2 d N}$, and

$$
L(\mathbf{q}, \dot{\mathbf{q}})=\sum_{n=1}^{N} m_{n} \frac{1}{2}\left|\dot{\mathbf{q}}_{n}\right|^{2}-V(\mathbf{q}) .
$$

Indeed,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\mathbf{q}}^{n}}(\mathbf{q}, \dot{\mathbf{q}})=\frac{\partial L}{\partial \mathbf{q}_{n}}(\mathbf{q}, \dot{\mathbf{q}}) \quad \Leftrightarrow \quad m_{n} \ddot{\mathbf{q}}_{n}(t)=-\frac{\partial V}{\partial \mathbf{q}_{n}}\left(\mathbf{q}_{t}\right)
$$

Newtonian and Hamiltonian systems

- A Newtonian potential system of N point masses in \mathbb{R}^{d} is equivalent to the Euler-Lagrange equations with $Q=\mathbb{R}^{d N}, T Q=\mathbb{R}^{2 d N}$, and

$$
L(\mathbf{q}, \dot{\mathbf{q}})=\sum_{n=1}^{N} m_{n} \frac{1}{2}\left|\dot{q}_{n}\right|^{2}-V(\mathbf{q}) .
$$

Indeed,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\mathbf{q}}^{n}}(\mathbf{q}, \dot{\mathbf{q}})=\frac{\partial L}{\partial \mathbf{q}_{n}}(\mathbf{q}, \dot{\mathbf{q}}) \quad \Leftrightarrow \quad m_{n} \ddot{\mathbf{q}}_{n}(t)=-\frac{\partial V}{\partial \mathbf{q}_{n}}\left(\mathbf{q}_{t}\right)
$$

- One passes to Hamiltonian dynamics via the Legendre transformation to get

$$
\dot{\mathbf{q}}=\frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}}=-\frac{\partial H}{\partial \mathbf{q}},
$$

where

$$
H(\mathbf{p}, \mathbf{q})=\sup _{\mathbf{q}}(\mathbf{p} \cdot \dot{\mathbf{q}}-L(\mathbf{q}, \dot{\mathbf{q}}))=\sum_{n=1}^{N} \frac{1}{2 m_{n}}\left|\dot{\mathbf{p}}_{n}\right|^{2}+V(\mathbf{q})
$$

Geodesic equation

- Let (M, g) be a Riemannian manifold with volume form μ_{g}.
- Define $S: \Omega\left(q_{1}, q_{2}\right) \rightarrow \mathbb{R}_{+}$by

$$
S(q)=E(q)=\int_{a}^{b} L\left(\dot{q}_{t}\right) \mathrm{d} t=\frac{1}{2} \int_{a}^{b} g_{q_{t}}\left(\dot{q}_{t}, \dot{q}_{t}\right) \mathrm{d} t
$$

Geodesic equation

- Let (M, g) be a Riemannian manifold with volume form μ_{g}.
- Define $S: \Omega\left(q_{1}, q_{2}\right) \rightarrow \mathbb{R}_{+}$by

$$
S(q)=E(q)=\int_{a}^{b} L\left(\dot{q}_{t}\right) \mathrm{d} t=\frac{1}{2} \int_{a}^{b} g_{q_{t}}\left(\dot{q}_{t}, \dot{q}_{t}\right) \mathrm{d} t
$$

- The Euler-Lagrange equation is the geodesic equation

$$
\frac{\mathrm{d}^{2} q^{a}}{\mathrm{~d} t^{2}}+\Gamma_{b c}^{q} \frac{\mathrm{~d} q^{b}}{\mathrm{~d} t} \frac{\mathrm{~d} q^{c}}{\mathrm{~d} t}=0
$$

where Γ is the Christoffel symbol. Alternatively,

$$
\nabla_{\dot{q}} \dot{q}=0,
$$

where ∇ is the Levi-Civita connection.

Geodesic equation

- Let (M, g) be a Riemannian manifold with volume form μ_{g}.
- Define $S: \Omega\left(q_{1}, q_{2}\right) \rightarrow \mathbb{R}_{+}$by

$$
S(q)=E(q)=\int_{a}^{b} L\left(\dot{q}_{t}\right) \mathrm{d} t=\frac{1}{2} \int_{a}^{b} g_{q_{t}}\left(\dot{q}_{t}, \dot{q}_{t}\right) \mathrm{d} t
$$

- The Euler-Lagrange equation is the geodesic equation

$$
\frac{\mathrm{d}^{2} q^{a}}{\mathrm{~d} t^{2}}+\Gamma_{b c}^{q} \frac{\mathrm{~d} q^{b}}{\mathrm{~d} t} \frac{\mathrm{~d} q^{c}}{\mathrm{~d} t}=0
$$

where Γ is the Christoffel symbol. Alternatively,

$$
\nabla_{\dot{q}} \dot{q}=0,
$$

where ∇ is the Levi-Civita connection.

- Geodesics are not always global minimizers of the energy functional, but they are local minimizers.

Lie groups

- Let G be a Lie group with identity e and Lie algebra $\mathfrak{g}=T_{e} G$. For example, $(G=\mathrm{GL}(d), \mathfrak{g}=\operatorname{Mat}(d))$ or $(G=\mathrm{SO}(d), \mathfrak{g}=\mathfrak{s o}(d))$.

Lie groups

- Let G be a Lie group with identity e and Lie algebra $\mathfrak{g}=T_{e} G$. For example, $(G=\operatorname{GL}(d), \mathfrak{g}=\operatorname{Mat}(d))$ or $(G=\operatorname{SO}(d), \mathfrak{g}=\mathfrak{s o}(d))$.
- Assume that the Lagrangian is right-invariant under the group action:

$$
L(g, \dot{g})=L\left(e, \dot{g} g^{-1}\right)=: \ell(u), \quad u=\dot{g} g^{-1} \in \mathfrak{g} .
$$

Lie groups

- Let G be a Lie group with identity e and Lie algebra $\mathfrak{g}=T_{e} G$. For example, $(G=\mathrm{GL}(d), \mathfrak{g}=\operatorname{Mat}(d))$ or $(G=\mathrm{SO}(d), \mathfrak{g}=\mathfrak{s p}(d))$.
- Assume that the Lagrangian is right-invariant under the group action:

$$
L(g, \dot{g})=L\left(e, \dot{g} g^{-1}\right)=: \ell(u), \quad u=\dot{g} g^{-1} \in \mathfrak{g} .
$$

- Let \mathfrak{g}^{*} be denote the dual of \mathfrak{g} and denote $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g}^{*} \rightarrow \mathbb{R}$.

Lie groups

- Let G be a Lie group with identity e and Lie algebra $\mathfrak{g}=T_{e} G$. For example, $(G=\operatorname{GL}(d), \mathfrak{g}=\operatorname{Mat}(d))$ or $(G=\operatorname{SO}(d), \mathfrak{g}=\mathfrak{s o}(d))$.
- Assume that the Lagrangian is right-invariant under the group action:

$$
L(g, \dot{g})=L\left(e, \dot{g} g^{-1}\right)=: \ell(u), \quad u=\dot{g} g^{-1} \in \mathfrak{g} .
$$

- Let \mathfrak{g}^{*} be denote the dual of \mathfrak{g} and denote $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g}^{*} \rightarrow \mathbb{R}$.
- Assume that $\frac{\delta \ell}{\delta u}: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ is a diffeomorphism, where

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \ell(u+\epsilon \delta u)=\left\langle\frac{\delta \ell}{\delta u}(u), \delta u\right\rangle_{\mathfrak{g}} \quad \forall \delta u \in \mathfrak{g} .
$$

Reducing variations to the Lie algebra

Let $g \in \Omega\left(g_{1}, g_{2}\right)$ and $\delta g=[c .]_{g} \in T_{g} \Omega\left(g_{1}, g_{2}\right)$. Set

$$
u=\dot{g} g^{-1} \in C^{1}([a, b] ; g), \quad \delta w=\dot{\delta} g g^{-1} \in C^{1}([a, b] ; \mathfrak{g})
$$

and

$$
\delta u_{t}=\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \dot{c}_{\epsilon}(t) c_{\epsilon}^{-1}(t) \in C^{1}([a, b] ; \mathfrak{g}) .
$$

Lemma

If

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\mathrm{~d}}{\mathrm{~d} \epsilon} c_{\epsilon}(t)=\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \frac{\mathrm{~d}}{\mathrm{~d} t} c_{\epsilon}(t) \tag{1}
\end{equation*}
$$

then

$$
\delta u_{t}=\delta \dot{w_{t}}-\operatorname{ad}_{u_{t}} \delta w_{t}=\delta \dot{w_{t}}+\left[u_{t}, \delta w_{t}\right] .
$$

Euler-Poincaré reduction

Theorem

For a curve $g \in \Omega\left(g_{1}, g_{2}\right)$ with $u=\dot{g} g^{-1} \in C^{1}([a, b] ; g)$, TFAE

- g satisfies the Euler-Lagrange equations;
- g is a critical point of $S(g)=\int_{a}^{b} L\left(g_{t}, \dot{g}_{t}\right) \mathrm{d} t$;
- u satisfies the Euler-Poincaré equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\delta \ell}{\delta u}+\mathrm{ad}_{u}^{*} \frac{\delta \ell}{\delta u}=0 ;
$$

- $\left(g, u, \lambda=\frac{\delta \ell}{\delta u}(u)\right)$ is a critical point of

$$
S(g, u, \lambda)=\int_{a}^{b} \ell\left(u_{t}\right)+\left\langle\lambda_{t}, \dot{g}_{t} g_{t}^{-1}-u_{t}\right\rangle_{g}
$$

- u is a critical point of $S(u)=\int_{a}^{b} \ell\left(u_{t}\right) \mathrm{d} t$ with variations of the form

$$
\delta u_{t}=\delta \dot{w}(t)-\operatorname{ad}_{u_{t}} \delta w(t)
$$

[Arnold, 1966] topological hydrodynamics

- Let $G=\operatorname{Diff}_{\mu_{g}}^{s}$ be the group of Sobolev diffeomorphisms, $s>d / 2+1$, on a Riemannian manifold (M, g) with volume form μ_{g}.

[Arnold, 1966] topological hydrodynamics

- Let $G=\operatorname{Diff}_{\mu_{g}}^{s}$ be the group of Sobolev diffeomorphisms, $s>d / 2+1$, on a Riemannian manifold (M, g) with volume form μ_{g}.
- $\mathfrak{g}=T_{e} G=\mathfrak{X}_{\text {div }}^{s}$ is the space of divergence-free vector fields [Ebin and Marsden, 1970, Theorem 4.2].

[Arnold, 1966] topological hydrodynamics

- Let $G=\operatorname{Diff}_{\mu_{g}}^{s}$ be the group of Sobolev diffeomorphisms, $s>d / 2+1$, on a Riemannian manifold (M, g) with volume form μ_{g}.
- $\mathfrak{g}=T_{e} G=\mathfrak{X}_{\text {div }}^{s}$ is the space of divergence-free vector fields [Ebin and Marsden, 1970, Theorem 4.2].
- We endow Diff $\mu_{\mu_{g}}^{s}$ with the right-invariant (weak/not-complete) metric

$$
\langle U, V\rangle_{\eta}=\int_{M} g_{\eta(m)}(U(m), V(m)) \mu_{g}(m)=\left\langle U \eta^{-1}, V \eta^{-1}\right\rangle_{\mathfrak{g}}
$$

where the right-hand-side is the L^{2}-inner product on vector fields

$$
\langle u, v\rangle_{\mathfrak{g}}=\int_{M} g_{m}(u(m), v(m)) \mu_{g}(m)
$$

[Arnold, 1966] topological hydrodynamics

- Let $G=\operatorname{Diff}_{\mu_{g}}^{s}$ be the group of Sobolev diffeomorphisms, $s>d / 2+1$, on a Riemannian manifold (M, g) with volume form μ_{g}.
- $\mathfrak{g}=T_{e} G=\mathfrak{X}_{\text {div }}^{s}$ is the space of divergence-free vector fields [Ebin and Marsden, 1970, Theorem 4.2].
- We endow Diff μ_{g}^{s} with the right-invariant (weak/not-complete) metric

$$
\langle U, V\rangle_{\eta}=\int_{M} g_{\eta(m)}(U(m), V(m)) \mu_{g}(m)=\left\langle U \eta^{-1}, V \eta^{-1}\right\rangle_{\mathfrak{g}}
$$

where the right-hand-side is the L^{2}-inner product on vector fields

$$
\langle u, v\rangle_{\mathfrak{g}}=\int_{M} g_{m}(u(m), v(m)) \mu_{g}(m)
$$

- [Ebin and Marsden, 1970] showed there exists a smooth Levi-Civita connection $\bar{\nabla}=P \nabla$ (where $\left.P: \mathfrak{X}^{s} \rightarrow \mathfrak{X}_{\text {div }}^{s}\right)$ and geodesic spray:

$$
\begin{array}{ccc}
\text { Euler-Lagrange } & u=\dot{\eta} \eta^{-1} & \text { Euler-Poincare } \\
P \nabla_{\dot{\eta}} \dot{\eta}=0 & \Leftrightarrow & \partial_{t} u+\nabla_{u} u=-\nabla p .
\end{array}
$$

Parametrization through Euler-Poincare [Holm, 2015]

- Assume a decomposition of the form

$$
\dot{g}_{t}=u_{t} g_{t}+\sum_{k=1}^{K} \xi_{k} g_{t} \dot{z}_{t}^{k}
$$

where u models coarse-scales and $\sum_{k} \xi_{k} \dot{z}^{k}$ models fast-scales.

Parametrization through Euler-Poincare [Holm, 2015]

- Assume a decomposition of the form

$$
\dot{g}_{t}=u_{t} g_{t}+\sum_{k=1}^{K} \xi_{k} g_{t} \dot{z}_{t}^{k}
$$

where u models coarse-scales and $\sum_{k} \xi_{k} \dot{z}^{k}$ models fast-scales.

- Require that $\left(g, u, \lambda=\frac{\delta \ell}{\delta u}(u)\right)$ is a critical point of

$$
S(g, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}\right)+\left\langle\lambda_{t}, \dot{g}_{t} g_{t}^{-1}-u_{t}-\sum_{k=1}^{K} \xi_{k} \dot{z}_{t}^{k}\right\rangle_{g}
$$

to derive an equation for u.

Parametrization through Euler-Poincare [Holm, 2015]

- Assume a decomposition of the form

$$
\dot{g}_{t}=u_{t} g_{t}+\sum_{k=1}^{K} \xi_{k} g_{t} \dot{z}_{t}^{k}
$$

where u models coarse-scales and $\sum_{k} \xi_{k} \dot{z}^{k}$ models fast-scales.

- Require that $\left(g, u, \lambda=\frac{\delta \ell}{\delta u}(u)\right)$ is a critical point of

$$
S(g, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}\right)+\left\langle\lambda_{t}, \dot{g}_{t} g_{t}^{-1}-u_{t}-\sum_{k=1}^{K} \xi_{k} \dot{z}_{t}^{k}\right\rangle_{g}
$$

to derive an equation for u.

- Preserves geometric structure for momentum $\frac{\delta \ell}{\delta u}$.

Parametrization through Euler-Poincare [Holm, 2015]

- Assume a decomposition of the form

$$
\dot{g}_{t}=u_{t} g_{t}+\sum_{k=1}^{K} \xi_{k} g_{t} \dot{z}_{t}^{k}
$$

where u models coarse-scales and $\sum_{k} \xi_{k} \dot{z}^{k}$ models fast-scales.

- Require that $\left(g, u, \lambda=\frac{\delta \ell}{\delta u}(u)\right)$ is a critical point of

$$
S(g, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}\right)+\left\langle\lambda_{t}, \dot{g}_{t} g_{t}^{-1}-u_{t}-\sum_{k=1}^{K} \xi_{k} \dot{z}_{t}^{k}\right\rangle_{g}
$$

to derive an equation for u.

- Preserves geometric structure for momentum $\frac{\delta \ell}{\delta u}$.
- Equivalently, u satisfies the Euler-Poincaré equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\delta \ell}{\delta u}\right]+\mathrm{ad}_{u}^{*} \frac{\delta \ell}{\delta u}+\sum_{k=1}^{K}\left(\mathrm{ad}_{\xi_{k}}^{*} \frac{\delta \ell}{\delta u}\right) \dot{z}_{t}^{k}=0 .
$$

Stochastic advection by Lie transport [Holm, 2015]

Letting $G=\operatorname{Diff}_{\mu}^{s}\left(\mathbb{T}^{d}\right), \mathfrak{g}=\mathfrak{X}_{\text {div }}^{s}\left(\mathbb{T}^{d}\right)$, and

$$
\ell(u)=\int_{\mathbb{T}^{d}}|u(x)|^{2} \mu(x)
$$

with $z_{t}^{k}=B_{t}^{k}, 1 \leq k \leq K$, independent Brownian motions, we find

$$
\mathrm{d} u^{i}+u^{j} \partial_{x^{j}} u^{i} \mathrm{~d} t+\sum_{k=1}^{K}\left(\xi^{j} \partial_{x^{j}} u^{j}+u^{j} \partial_{x^{i}} \xi^{j}\right) \circ \mathrm{d} B_{t}^{k}=-\partial_{x^{i}} \mathrm{~d} p .
$$

in the standard coordinate system with $g_{i j}=\delta_{i j}$.

Stochastic advection by Lie transport [Holm, 2015]

Letting $G=\operatorname{Diff}_{\mu}^{s}\left(\mathbb{T}^{d}\right), \mathfrak{g}=\mathfrak{X}_{\text {div }}^{s}\left(\mathbb{T}^{d}\right)$, and

$$
\ell(u)=\int_{\mathbb{T}^{d}}|u(x)|^{2} \mu(x)
$$

with $z_{t}^{k}=B_{t}^{k}, 1 \leq k \leq K$, independent Brownian motions, we find

$$
\mathrm{d} u^{i}+u^{j} \partial_{x^{j}} u^{i} \mathrm{~d} t+\sum_{k=1}^{K}\left(\xi^{j} \partial_{x^{j}} u^{j}+u^{j} \partial_{x^{i}} \xi^{j}\right) \circ \mathrm{d} B_{t}^{k}=-\partial_{x^{i}} \mathrm{~d} p .
$$

in the standard coordinate system with $g_{i j}=\delta_{i j}$.

If we denote by u^{b} the one-form associated with u, we find

$$
\mathrm{d} u^{\mathrm{b}}+£_{u} u^{\mathrm{b}} \mathrm{~d} t+£_{\xi} u^{\mathrm{b}} \circ \mathrm{~d} B_{t}=-\mathrm{d} \mathrm{~d} p,
$$

and hence the vorticity two-form $\omega=\mathbf{d} u^{b}$ satisfies

$$
\mathrm{d} \omega+£_{u} \omega \mathrm{~d} t+£_{\xi} \omega \circ \mathrm{d} B_{t}=0 .
$$

Geometric rough paths

Definition

For a given $\alpha \in\left(\frac{1}{3}, \frac{1}{2}\right]$, we say

$$
\mathbf{Z}=(z, \mathbb{Z}) \in C_{T}^{\alpha}\left(\mathbb{R}^{K}\right) \times C_{2, T}^{2 \alpha}\left(\mathbb{R}^{K \times K}\right)
$$

is \mathbb{R}^{K}-valued α-Hölder geometric rough path if there exists
$\mathbf{Z}^{(N)}=\left(z_{t}^{(N)}, \mathbb{Z}_{s t}^{(N)}:=\int_{s}^{t} \int_{s}^{r} \mathrm{~d} z_{r_{2}}^{(N)} \otimes \mathrm{d} z_{r}^{(N)}\right) \in C_{T}^{1}\left(\mathbb{R}^{K}\right) \times C_{2, T}^{1}\left(\mathbb{R}^{K \times K}\right)$
such that $\lim _{N \rightarrow \infty} \sup _{0 \leq s<t \leq T} \frac{\left|\delta z_{s t}-\delta z_{s t}^{(N)}\right|}{|t-s|^{\alpha}}+\sup _{0 \leq s<t \leq T} \frac{\left|\mathbb{Z}_{s t}-\mathbb{Z}_{s t}^{(N)}\right|}{|t-s|^{2 \alpha}}=0$.
We denote by $\mathscr{C}_{g, T}^{\alpha}\left(\mathbb{R}^{K}\right)$ the space of geometric rough paths.
Examples include Stratonovich Brownian motion, fractional Brownian motion, and Gaussian processes with sufficient time-correlation decay on a set of full probabilty measure.

Controlled rough paths and the rough integral

Definition

For a given Fréchet space E and $\mathbf{Z} \in \mathscr{C}_{g, T}^{\alpha}\left(\mathbb{R}^{K}\right)$, we let $\mathscr{D}_{Z, T}(E)$ denote the space of $\mathbf{Y}=\left(Y, Y^{\prime}\right) \in C_{T}^{\alpha}(E) \times C_{T}^{\alpha}\left(E^{K}\right)$ such

$$
p\left(\delta Y_{s t}-Y_{s}^{\prime} \delta Z_{s t}\right)=O\left(|t-s|^{2 \alpha}\right)
$$

for every seminorm p of E, endowed with the obvious topology.

Controlled rough paths and the rough integral

Definition

For a given Fréchet space E and $\mathbf{Z} \in \mathscr{C}_{g, T}^{\alpha}\left(\mathbb{R}^{K}\right)$, we let $\mathscr{D}_{Z, T}(E)$ denote the space of $\mathbf{Y}=\left(Y, Y^{\prime}\right) \in C_{T}^{\alpha}(E) \times C_{T}^{\alpha}\left(E^{K}\right)$ such

$$
p\left(\delta Y_{s t}-Y_{s}^{\prime} \delta Z_{s t}\right)=O\left(|t-s|^{2 \alpha}\right)
$$

for every seminorm p of E, endowed with the obvious topology.

Theorem (Young / Sewing)

There exists a (unique) continuous linear map $\mathbf{I}_{\mathbf{Z}}: \mathscr{D}_{Z, T}\left(E^{K}\right) \rightarrow \mathscr{D}_{Z, T}(E)$ such that $\mathbf{I}_{\mathbf{Z}}(\mathbf{Y})=\left(\int_{0} \mathbf{Y} d \mathbf{Z}, Y\right)$ where $\int_{0}^{0} \mathbf{Y} d \mathbf{Z}=0_{E}$ and

$$
p\left(\int_{s}^{t} \mathbf{Y}_{r} \mathrm{~d} \mathbf{Z}_{r}-Y_{s} \delta Z_{s t}-Y_{s}^{\prime} \mathbb{Z}_{s t}\right)=O\left(|t-s|^{3 \alpha}\right)
$$

Truly rough path

Definition

Let us call a path $\mathbf{Z} \in \mathscr{C}_{g, T}^{\alpha}\left(\mathbb{R}^{K}\right)$ truly rough if for all $s \in[0, T]$ and t in a dense set

$$
\limsup _{t \downarrow s} \frac{\left|\delta Z_{s t}\right|}{|t-s|^{2 \alpha}}=\infty
$$

Lemma

A decomposition of a path $\mathrm{X} \in C_{T}^{\alpha}(E)$ of the form

$$
X_{t}=X_{0}+\int_{0}^{t} \beta_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} \mathbf{Z}_{s}
$$

is unique.

Manifolds and the tensor bundles

- Let M be a compact boundaryless d-dimensional real manifold.

Manifolds and the tensor bundles

- Let M be a compact boundaryless d-dimensional real manifold.
- Let \mathfrak{X} denote the space of smooth vector fields

Manifolds and the tensor bundles

- Let M be a compact boundaryless d-dimensional real manifold.
- Let \mathfrak{X} denote the space of smooth vector fields
- Let Ω^{k} denote the space of smooth alternating k-forms

Manifolds and the tensor bundles

- Let M be a compact boundaryless d-dimensional real manifold.
- Let \mathfrak{X} denote the space of smooth vector fields
- Let Ω^{k} denote the space of smooth alternating k-forms
- Let \mathscr{S}_{s}^{r} denote the space of smooth r-contravariant and s-covariant tensors.

Manifolds and the tensor bundles

- Let M be a compact boundaryless d-dimensional real manifold.
- Let \mathfrak{X} denote the space of smooth vector fields
- Let Ω^{k} denote the space of smooth alternating k-forms
- Let \mathscr{S}_{s}^{r} denote the space of smooth r-contravariant and s-covariant tensors.
- For a given $\phi \in$ Diff and $\tau \in \mathscr{T}_{s}^{r}$, let $\phi^{*} \tau$ denote the pullback and $\phi_{*} \tau=\left(\phi^{-1}\right)^{*} \tau$ denote the pushforward.

Lie derivative

The Lie derivative of $\tau \in \mathscr{T}_{s}^{r}$ along $u \in C_{T}(\mathfrak{X})$ is defined by

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r}\right|_{r=t} \phi_{r t}^{*} \tau=£_{u_{t}} \tau, \quad \text { where } \quad \dot{\phi}_{t s}=u_{t}\left(\phi_{t s}\right), \quad \phi_{s s}=\mathrm{id} .
$$

Lie derivative

The Lie derivative of $\tau \in \mathscr{T}_{s}^{r}$ along $u \in C_{T}(\mathfrak{X})$ is defined by

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r}\right|_{r=t} \phi_{r t}^{*} \tau=£_{u_{t}} \tau, \quad \text { where } \quad \dot{\phi}_{t s}=u_{t}\left(\phi_{t s}\right), \quad \phi_{s s}=\mathrm{id} .
$$

For $f \in \Omega^{0}, u, v \in \mathfrak{X}, \alpha \in \Omega^{1}$, and non-vanishing $\mu \in \Omega^{d}$

$$
\begin{gathered}
£_{u} f=\mathbf{d} f(u)=u_{t}^{i} \partial_{x^{i}} f, \quad £_{u} v=[u, v]=\left(u^{j} \partial_{x^{j}} v^{i}-v^{j} \partial_{x^{j}} u^{i}\right) \partial_{x^{i}}, \\
£_{u} \alpha=\left(u^{j} \partial_{x^{j}} \alpha_{i}+\alpha_{j} \partial_{x^{i}} u^{j}\right) d x^{i}, \quad £_{u} \mu=\left(\operatorname{div}_{\mu} u\right) \mu .
\end{gathered}
$$

Rough flow on M

Theorem

There exists a continuous map

$$
\text { Flow : } C_{T}^{\alpha}(\mathfrak{X}) \times C_{T}^{\infty}\left(\mathfrak{X}^{K}\right) \times \mathscr{\mathscr { C }}_{g, T}\left(\mathbb{R}^{K}\right) \rightarrow C_{2, T}^{\alpha}(\text { Diff })
$$

such that $\eta=\operatorname{Flow}(u, \xi, \mathbf{Z})$ satisfies

$$
\eta_{t s}=\eta_{t \theta} \circ \eta_{\theta s}, \quad \forall(t, s) \in[0, T]^{2} ;
$$

- for all $(s, m) \in[0, T] \times M, \eta \cdot s(m) \in C^{\alpha}([s, T] ; M)$ is the unique solution of

$$
\mathrm{d} \eta_{t s}(m)=u_{t}\left(\eta_{t s}(m)\right) \mathrm{d} t+\xi_{t}\left(\eta_{t s}(m)\right) d \mathbf{Z}_{t}, \quad \phi_{s s}(m)=m \in M ;
$$

Rough flow on M

Theorem

There exists a continuous map

$$
\text { Flow : } C_{T}^{\alpha}(\mathfrak{X}) \times C_{T}^{\infty}\left(\mathfrak{X}^{K}\right) \times \mathscr{C}_{g, T}\left(\mathbb{R}^{K}\right) \rightarrow C_{2, T}^{\alpha}(\text { Diff })
$$

such that $\eta=\operatorname{Flow}(u, \xi, \mathbf{Z})$ satisfies

$$
\eta_{t s}=\eta_{t \theta} \circ \eta_{\theta s}, \quad \forall(t, s) \in[0, T]^{2}
$$

- for all $(s, m) \in[0, T] \times M, \eta_{\cdot s}(m) \in C^{\alpha}([s, T] ; M)$ is the unique solution of

$$
\mathrm{d} \eta_{t s}(m)=u_{t}\left(\eta_{t s}(m)\right) \mathrm{d} t+\xi_{t}\left(\eta_{t s}(m)\right) d \mathbf{Z}_{t}, \quad \phi_{s s}(m)=m \in M
$$

that is, for all smooth $f: M \rightarrow \mathbb{R}$,

$$
\Leftrightarrow \quad \eta_{t s}^{*} f(m)=f(m)+\int_{s}^{t} \eta_{r s}^{*} £_{u_{r}} f(m) d r+\int_{s}^{t} \eta_{r s}^{*} £_{\xi_{r}} f(m) d \mathbf{Z}_{r}
$$

The Lie chain rule

Lemma

- Let $\beta \in C_{T}\left(\mathscr{T}_{s}^{r}\right), \sigma=\left(\sigma, \sigma^{\prime}\right) \in \mathscr{D}_{\mathrm{Z}, T}\left(\left(\mathscr{T}_{s}^{r}\right)^{K}\right)$, and

$$
\tau_{t}=\tau_{0}+\int_{0}^{t} \beta_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} \mathbf{Z}_{s}, \quad t \in[0, T]
$$

Then

$$
\eta_{t s}^{*} \tau_{t}=\tau_{s}+\int_{s}^{t} \eta_{r s}^{*}\left(\beta_{r}+£_{u_{r}} \tau_{r}\right) \mathrm{d} r+\int_{0}^{t} \eta_{r s}^{*}\left(\sigma_{r}+£_{\xi_{r}} \tau_{r}\right) d \mathbf{Z}_{r} .
$$

The Lie chain rule

Lemma

- Let $\beta \in C_{T}\left(\mathscr{T}_{s}^{r}\right), \sigma=\left(\sigma, \sigma^{\prime}\right) \in \mathscr{D}_{\mathrm{Z}, T}\left(\left(\mathscr{T}_{s}^{r}\right)^{K}\right)$, and

$$
\tau_{t}=\tau_{0}+\int_{0}^{t} \beta_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} \mathbf{Z}_{s}, \quad t \in[0, T]
$$

Then

$$
\eta_{t s}^{*} \tau_{t}=\tau_{s}+\int_{s}^{t} \eta_{r s}^{*}\left(\beta_{r}+£_{u_{r}} \tau_{r}\right) \mathrm{d} r+\int_{0}^{t} \eta_{r s}^{*}\left(\sigma_{r}+£_{\xi_{r}} \tau_{r}\right) d \mathbf{Z}_{r}
$$

- For a given $\tau_{0} \in \mathscr{T}_{s}^{r}, \tau_{t}=\eta_{t 0 *} \tau_{0}$ satisfies

$$
\tau_{t}+\int_{0}^{t} £_{u_{s}} \tau_{s} \mathrm{~d} s+\int_{0}^{t} £_{\xi_{s}} \tau_{s} \mathrm{~d} \mathbf{Z}_{s}=\tau_{0}
$$

Momentum and the coadjoint operator

- Recall that if $G=$ Diff, then $\mathfrak{g}=\mathfrak{X}$. We want a canonical characterization of \mathfrak{g} ", where 'momentum' $\delta \ell / \delta \mu$ will lie.

Momentum and the coadjoint operator

- Recall that if $G=$ Diff, then $\mathfrak{g}=\mathfrak{X}$. We want a canonical characterization of g^{*}, where 'momentum' $\delta \ell / \delta \mu$ will lie.
- Let $\mathfrak{X}^{\vee}=\Omega^{1} \otimes \Omega^{d}$ and $\langle\cdot, \cdot\rangle_{\mathfrak{X}}: \mathfrak{X}^{\vee} \times \mathfrak{X} \rightarrow \mathbb{R}$ be defined by

$$
\langle\alpha \otimes \mu, u\rangle_{\mathfrak{X}}=\int_{M} \alpha(u) \mu, \quad \alpha \otimes \mu \in \mathfrak{X}^{\vee}, \quad u \in \mathfrak{X} ;
$$

Momentum and the coadjoint operator

- Recall that if $G=$ Diff, then $\mathfrak{g}=\mathfrak{X}$. We want a canonical characterization of g^{*}, where 'momentum' $\delta \ell / \delta \mu$ will lie.
- Let $\mathfrak{X}^{\vee}=\Omega^{1} \otimes \Omega^{d}$ and $\langle\cdot, \cdot\rangle_{\mathfrak{X}}: \mathfrak{X}^{\vee} \times \mathfrak{X} \rightarrow \mathbb{R}$ be defined by

$$
\langle\alpha \otimes \mu, u\rangle_{\mathfrak{X}}=\int_{M} \alpha(u) \mu, \quad \alpha \otimes \mu \in \mathfrak{X}^{\vee}, \quad u \in \mathfrak{X} ;
$$

- Noting that $\operatorname{ad}_{u} v=-[u, v]=-£_{u} v$, for all $\alpha \otimes \mu \in \mathfrak{X}^{\vee}$ and $u \in \mathfrak{X}$, we find

$$
\left\langle\alpha \otimes \mu, \operatorname{ad}_{u} v\right\rangle_{\mathfrak{E}}=\left\langle £_{u}(\alpha \otimes \mu), v\right\rangle,
$$

and hence the co-adjoint operator is

$$
\mathrm{ad}_{u}^{*}=£_{u} .
$$

Momentum and the coadjoint operator

- Recall that if $G=$ Diff, then $\mathfrak{g}=\mathfrak{X}$. We want a canonical characterization of g^{*}, where 'momentum' $\delta \ell / \delta \mu$ will lie.
- Let $\mathfrak{X}^{\vee}=\Omega^{1} \otimes \Omega^{d}$ and $\langle\cdot, \cdot\rangle_{\mathfrak{X}}: \mathfrak{X}^{\vee} \times \mathfrak{X} \rightarrow \mathbb{R}$ be defined by

$$
\langle\alpha \otimes \mu, u\rangle_{\mathfrak{X}}=\int_{M} \alpha(u) \mu, \quad \alpha \otimes \mu \in \mathfrak{X}^{\vee}, \quad u \in \mathfrak{X} ;
$$

- Noting that $\operatorname{ad}_{u} v=-[u, v]=-£_{u} v$, for all $\alpha \otimes \mu \in \mathfrak{X}^{\vee}$ and $u \in \mathfrak{X}$, we find

$$
\left\langle\alpha \otimes \mu, \operatorname{ad}_{u} v\right\rangle_{\mathfrak{E}}=\left\langle £_{u}(\alpha \otimes \mu), v\right\rangle,
$$

and hence the co-adjoint operator is

$$
\mathrm{ad}_{u}^{*}=£_{u} .
$$

- In the incompressible setting on a Riemannian manifold (M, g), we define the dual of the μ_{g}-divergence-free vector fields $\mathfrak{X}_{\mu_{g}}$ to be

$$
\mathfrak{X}_{\mu_{g}}^{\vee}=\mathfrak{X}^{\vee} / \mathbf{d} \Omega^{0} \otimes \mu_{g} .
$$

Advected variables and the diamond operator

- Let \mathfrak{A} be a direct summand of tensors field bundles and \mathfrak{H}^{\vee} denote the canonical dual. Denote the duality pairing by $\langle\cdot, \cdot\rangle_{\mathfrak{A}}: \mathfrak{A}^{\vee} \times \mathfrak{H} \rightarrow \mathbb{R}$.

Advected variables and the diamond operator

- Let \mathfrak{A} be a direct summand of tensors field bundles and \mathfrak{H}^{\vee} denote the canonical dual. Denote the duality pairing by $\langle\cdot, \cdot\rangle_{\mathfrak{A}}: \mathfrak{A}^{\vee} \times \mathfrak{H} \rightarrow \mathbb{R}$.
- Paths in \mathfrak{A} will model variables like temperature, density, or buoyancy.

Advected variables and the diamond operator

- Let \mathfrak{A} be a direct summand of tensors field bundles and \mathfrak{H}^{\vee} denote the canonical dual. Denote the duality pairing by $\langle\cdot, \cdot\rangle_{\mathfrak{A}}: \mathfrak{A}^{\vee} \times \mathfrak{H} \rightarrow \mathbb{R}$.
- Paths in \mathfrak{A} will model variables like temperature, density, or buoyancy.
- Define $\diamond: \mathfrak{X}^{\vee} \times \mathfrak{A} \rightarrow \mathfrak{X}^{\vee}$ by

$$
\left\langle b, £_{u} a\right\rangle_{\mathfrak{A}}=-\langle b \diamond a, u\rangle_{\mathfrak{X}} \quad \forall a \in \mathfrak{A}, b \in \mathfrak{A}^{\vee}, u \in \mathfrak{X}
$$

The Lagrangian

- Let $\ell: \mathfrak{X} \times \mathfrak{A} \rightarrow \mathbb{R}$. Assume that $\frac{\delta \ell}{\delta u}: \mathfrak{X} \times \mathfrak{A} \rightarrow \mathfrak{X}^{\vee}$ and $\frac{\delta \ell}{\delta a}: \mathfrak{X} \times \mathfrak{A} \rightarrow \mathfrak{A}^{\vee}$ are continuous:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \ell(u+\epsilon \delta u, a+\epsilon \delta a)=\left\langle\frac{\delta \ell}{\delta u}(u, a), \delta u\right\rangle_{\mathfrak{X}}+\left\langle\frac{\delta \ell}{\delta a}(u, a), \delta a\right\rangle_{\mathfrak{A}}
$$

- Assume that $\frac{\delta \ell}{\delta u}(\cdot, a): \mathfrak{X} \rightarrow \mathfrak{X}^{\vee}$ is an isomorphism for all $a \in \mathfrak{A}$.

The Lagrangian

- Let $\ell: \mathfrak{X} \times \mathfrak{H} \rightarrow \mathbb{R}$. Assume that $\frac{\delta \ell}{\delta u}: \mathfrak{X} \times \mathfrak{A} \rightarrow \mathfrak{X}^{\vee}$ and $\frac{\delta \ell}{\delta a}: \mathfrak{X} \times \mathfrak{A} \rightarrow \mathfrak{A}^{\vee}$ are continuous:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \ell(u+\epsilon \delta u, a+\epsilon \delta a)=\left\langle\frac{\delta \ell}{\delta u}(u, a), \delta u\right\rangle_{\mathfrak{X}}+\left\langle\frac{\delta \ell}{\delta a}(u, a), \delta a\right\rangle_{\mathfrak{I}}
$$

- Assume that $\frac{\delta \ell}{\delta u}(\cdot, a): \mathfrak{X} \rightarrow \mathfrak{X}^{\vee}$ is an isomorphism for all $a \in \mathfrak{A}$.
- Density $D=\rho \mu_{g} \in \mathfrak{A}=\Omega^{d}$ is an advected variable. Let

$$
\ell(u, D)=\frac{1}{2} \int_{M} \rho g(u, u) \mu_{g}=\frac{1}{2} \int_{M} \rho u^{b}(u) \mu_{g}=\frac{1}{2}\left\langle u^{b} \otimes \rho \mu_{g}, u\right\rangle_{\mathfrak{x}} .
$$

Then

$$
\frac{\delta \ell}{\delta u}=u^{\mathrm{b}} \otimes \rho \mu_{g} \in \mathfrak{X}^{\vee}, \quad \frac{\delta \ell}{\delta D}=\frac{1}{2} g(u, u) \in \mathfrak{H}^{\vee}=\Omega^{0} .
$$

Hamilton-Pontryagin (HP) variational principle: flows

- Let $\mathbf{Z} \in \mathscr{C}_{g, T}\left(\mathbb{R}^{K}\right)$ be truly rough and

$$
\operatorname{Diff}{ }_{\mathrm{Z}}=\operatorname{Flow}\left(C_{T}^{\alpha}(\mathfrak{X}), C_{T}^{\infty}\left(\mathfrak{X}^{K}\right), \mathbf{Z}\right){ }_{0} .
$$

- A given $\eta=\operatorname{Flow}(v, \sigma, \mathbf{Z}) \in \operatorname{Diff}_{\mathbf{Z}}$ satisfies

$$
d \eta_{t}=v_{t}\left(\eta_{t}\right) \mathrm{d} t+\sigma_{t}\left(\eta_{t}\right) \mathrm{d} \mathbf{Z}_{t}, \quad \eta_{0}=\mathrm{id} .
$$

- For given $\lambda \in \mathscr{D}_{Z, T}\left(\mathfrak{F}^{\vee}\right)$, define

$$
\int_{0}^{T}\left\langle\lambda_{t}, \mathrm{~d} \eta_{t} \eta_{t}^{-1}\right\rangle_{\mathfrak{X}}:=\int_{0}^{T}\left\langle\lambda_{t}, v_{t}\right\rangle_{\mathfrak{X}} \mathrm{d} t+\int_{0}^{T}\left\langle\lambda_{t}, \sigma_{t}\right\rangle_{\mathfrak{E}} \mathrm{d} \mathbf{Z}_{t} .
$$

HP variational principle: functional and constraints

- Define the action functional $S^{H P_{\mathrm{Z}}}: \operatorname{Diff}_{\mathrm{Z}} \times C_{T}^{\alpha}(\mathfrak{X}) \times \mathscr{D}_{Z, T}\left(\mathfrak{F}^{\vee}\right) \rightarrow \mathbb{R}$ by

$$
S^{H P_{\mathbf{Z}}}(\eta, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}, \eta_{t *} a_{0}\right) \mathrm{dt}+\left\langle\lambda_{t}, d \eta_{t} \eta_{t}^{-1}-u_{t} \mathrm{dt}-\xi \mathrm{d} \mathbf{Z}_{t}\right\rangle_{\mathfrak{x}} .
$$

HP variational principle: functional and constraints

- Define the action functional $S^{H P_{\mathbf{Z}}}: \operatorname{Diff}_{\mathbf{Z}} \times C_{T}^{\alpha}(\mathfrak{X}) \times \mathscr{D}_{Z, T}\left(\mathfrak{F}^{\vee}\right) \rightarrow \mathbb{R}$ by

$$
S^{H P_{\mathbf{Z}}}(\eta, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}, \eta_{t *} a_{0}\right) \mathrm{dt}+\left\langle\lambda_{t}, d \eta_{t} \eta_{t}^{-1}-u_{t} \mathrm{dt}-\xi \mathrm{d} \mathbf{Z}_{t}\right\rangle_{\mathfrak{x}}
$$

- The Lagrange constraint imposes

$$
\mathrm{d} \eta_{t}=u_{t}\left(\eta_{t}\right) \mathrm{d} t+\xi\left(\eta_{t}\right) \mathrm{d} \mathbf{Z}_{t}
$$

and hence by the Lie chain rule

$$
\mathrm{d} a_{t}+£_{u_{t}} a_{t} \mathrm{~d} t+£_{\xi} a_{t} \mathrm{~d} \mathbf{Z}_{t}=0
$$

HP variational principle: functional and constraints

- Define the action functional $S^{H P_{\mathbf{Z}}}: \operatorname{Diff}_{\mathbf{Z}} \times C_{T}^{\alpha}(\mathfrak{X}) \times \mathscr{D}_{Z, T}\left(\mathfrak{F}^{\vee}\right) \rightarrow \mathbb{R}$ by

$$
S^{H P_{\mathbf{Z}}}(\eta, u, \lambda)=\int_{0}^{T} \ell\left(u_{t}, \eta_{t *} a_{0}\right) \mathrm{dt}+\left\langle\lambda_{t}, d \eta_{t} \eta_{t}^{-1}-u_{t} \mathrm{dt}-\xi \mathrm{d} \mathbf{Z}_{t}\right\rangle_{\mathfrak{x}}
$$

- The Lagrange constraint imposes

$$
\mathrm{d} \eta_{t}=u_{t}\left(\eta_{t}\right) \mathrm{d} t+\xi\left(\eta_{t}\right) \mathrm{d} \mathbf{Z}_{t}
$$

and hence by the Lie chain rule

$$
\mathrm{d} a_{t}+£_{u_{t}} a_{t} \mathrm{~d} t+£_{\xi} a_{t} \mathrm{~d} \mathbf{Z}_{t}=0 .
$$

- The Clebsch variational principle, which I am not presenting, directly imposes the advection relation. We can avoid the assumption of truly roughness in this case due to the fundamental theorem of rough calculus of variations.

HP variational principle: variations

- For a given $\delta w \in C_{T}^{\infty}(\mathfrak{X})$ with $\delta w_{0}=\delta w_{T}=0$, define $\psi:(-1,1) \in[0, T] \rightarrow$ Diff by

$$
\dot{\psi}_{t}^{\epsilon}(m)=\epsilon \dot{\delta} \dot{w}_{t}\left(\psi_{t}^{\epsilon}(m)\right), \quad \psi_{0}^{\epsilon}(m)=m .
$$

and $\eta_{t}^{\epsilon}=\psi_{t}^{\epsilon} \circ \eta_{t}$ and it can be shown that

$$
d \eta_{t}^{\epsilon}=\left(\dot{\delta} \dot{w}_{t}+\operatorname{ad}_{v_{t}} \delta w_{t}\right) \mathrm{dt}+\operatorname{ad}_{\sigma_{t}} \delta w_{t} \mathrm{~d} \mathbf{Z}_{t}
$$

HP variational principle: variations

- For a given $\delta w \in C_{T}^{\infty}(\mathfrak{X})$ with $\delta w_{0}=\delta w_{T}=0$, define $\psi:(-1,1) \in[0, T] \rightarrow$ Diff by

$$
\dot{\psi}_{t}^{\epsilon}(m)=\epsilon \dot{\delta w_{t}}\left(\psi_{t}^{\epsilon}(m)\right), \quad \psi_{0}^{\epsilon}(m)=m .
$$

and $\eta_{t}^{\epsilon}=\psi_{t}^{\epsilon} \circ \eta_{t}$ and it can be shown that

$$
d \eta_{t}^{\epsilon}=\left(\dot{\delta} \dot{w}_{t}+\operatorname{ad}_{v_{t}} \delta w_{t}\right) \mathrm{dt}+\operatorname{ad}_{\sigma_{t}} \delta w_{t} \mathrm{~d} \mathbf{Z}_{t} .
$$

- We take variations of u and λ of the form $u_{\epsilon}=u+\epsilon \delta u$ and $\lambda_{\epsilon}=\lambda+\epsilon \delta \lambda$ with

$$
\delta u_{0}=\delta u_{T}=0 \quad \text { and } \quad \delta \lambda_{0}=\delta \lambda_{T}=0 .
$$

HP variational principle

Theorem ([Crisan et al., 2020b])

A curve (η, u, λ) is a critical point of $S^{H P_{\mathbf{Z}}}$ iff for all $[0, T]$,

$$
\begin{aligned}
\mathrm{d} \eta_{t} & =u_{t}\left(\eta_{t}\right) \mathrm{d} t+\xi\left(\eta_{t}\right) \mathrm{d} \mathbf{Z}_{t}, \quad t \in(0, T], \quad \eta_{0}=\mathrm{id}, \\
m & =\frac{\delta \ell}{\delta u}(u, a)=\lambda, \\
m_{t} & +\int_{0}^{t} £_{u_{s}} m_{s} \mathrm{~d} s+\int_{0}^{t} £_{\xi} m_{s} \mathrm{~d} \mathbf{Z}_{s} \stackrel{\mathfrak{}^{v}}{=} m_{0}+\int_{0}^{t} \frac{\delta \ell}{\delta a}\left(u_{s}, a_{s}\right) \diamond a_{s} \mathrm{~d} s, \\
a_{t} & +\int_{0}^{t} £_{u_{s}} a_{s} \mathrm{~d} s+\int_{0}^{t} £_{\xi} a_{s} \mathrm{~d} \mathbf{Z}_{s} \stackrel{\mathscr{R}}{=} a_{0}, \quad a_{t}=\eta_{t *} a_{0} .
\end{aligned}
$$

A Kelvin circulation theorem

Recall that density $D \in C_{T}^{\alpha}\left(\Omega^{d}\right)$ is an advected variable:

$$
\mathrm{d} D+£_{u} D \mathrm{~d} t+£_{\xi} D \mathrm{~d} \mathbf{Z}_{t}=0 \quad \Leftrightarrow \quad D_{t}=\eta_{t *} D_{0}
$$

Moreover, $\frac{\delta \ell}{\delta u}, \frac{\delta \ell}{\delta a} \in \Omega^{1} \otimes \Omega^{d}$, so that $\frac{1}{D} \frac{\delta \ell}{\delta u}, \frac{1}{D} \frac{\delta \ell}{\delta a} \in \Omega^{1}$ are one-forms.

Theorem

Let Γ denote a compactly embedded one-dimensional smooth submanifold of M. If D_{0} is non-vanishing, then

$$
\int_{\eta_{t} \Gamma} \frac{1}{D_{t}} \frac{\delta \ell}{\delta u}\left(u_{t}, a_{t}\right)=\int_{\Gamma} \frac{1}{D_{0}} \frac{\delta \ell}{\delta u}\left(u_{0}, a_{0}\right)+\int_{0}^{t} \int_{\eta_{s} \Gamma} \frac{1}{D_{s}} \frac{\delta \ell}{\delta a}\left(u_{s}, a_{s}\right) \diamond a_{s} \mathrm{~d} s .
$$

Incompressible Euler

Define the Lagrangian $\ell: \mathfrak{X}_{\mu_{g}} \times \mathfrak{A} \rightarrow \mathbb{R}$ by

$$
\ell\left(u, D=\rho \mu_{g}\right)=\frac{1}{2} \int_{M} \rho g(u, u) \mu_{g} .
$$

Applying $\frac{1}{\rho \mu_{g}}$ to the momentum equation (i.e., $\frac{\delta \ell}{\delta u}$) we get

$$
\begin{gathered}
\mathrm{d} u_{t}^{\mathrm{b}}+£_{u_{t}} u_{t}^{\mathrm{b}} \mathrm{~d} t+£_{\xi} u_{t}^{\mathrm{b}} \mathrm{~d} \mathbf{Z}_{t} \stackrel{\Omega^{1}}{=} \frac{1}{2} \mathrm{~d} g\left(u_{t}, u_{t}\right) \mathrm{d} t-\frac{1}{\rho_{t}} \mathrm{~d} p_{t} \mathrm{~d} t-\frac{1}{\rho_{t}} \mathrm{~d} q_{t} \mathrm{~d} \mathbf{Z}_{t}, \\
\mathbf{d}^{*} u^{\mathrm{b}}=0=\operatorname{div} u, \\
\mathrm{~d} \rho_{t}+£_{u_{t}} \rho_{t} \mathrm{~d} t+£_{\xi} \rho_{t} \mathrm{~d} \mathbf{Z}_{t} \stackrel{\Omega^{0}}{=} 0 .
\end{gathered}
$$

Incompressible Euler

Define the Lagrangian $\ell: \mathfrak{X}_{\mu_{g}} \times \mathfrak{A} \rightarrow \mathbb{R}$ by

$$
\ell\left(u, D=\rho \mu_{g}\right)=\frac{1}{2} \int_{M} \rho g(u, u) \mu_{g} .
$$

Applying $\frac{1}{\rho \mu_{g}}$ to the momentum equation (i.e., $\frac{\delta \ell}{\delta u}$) we get

$$
\begin{gathered}
\mathrm{d} u_{t}^{\mathrm{b}}+£_{u_{t}} u_{t}^{\mathrm{b}} \mathrm{~d} t+£_{\xi} u_{t}^{\mathrm{b}} \mathrm{~d} \mathbf{Z}_{t} \stackrel{\Omega^{1}}{=} \frac{1}{2} \mathrm{~d} g\left(u_{t}, u_{t}\right) \mathrm{d} t-\frac{1}{\rho_{t}} \mathrm{~d} p_{t} \mathrm{~d} t-\frac{1}{\rho_{t}} \mathrm{~d} q_{t} \mathrm{~d} \mathbf{Z}_{t}, \\
\mathbf{d}^{*} u^{\mathrm{b}}=0=\operatorname{div} u, \\
\mathrm{~d} \rho_{t}+£_{u_{t}} \rho_{t} \mathrm{~d} t+£_{\xi} \rho_{t} \mathrm{~d} \mathbf{Z}_{t} \stackrel{\Omega^{0}}{=} 0 .
\end{gathered}
$$

In the special case $\rho \equiv 1$ (homogeneous fluid), we find

$$
\mathrm{d} u_{t}+£_{u_{t}} u_{t}^{\mathrm{b}} \mathrm{~d} t+£_{\xi} u_{t}^{\mathrm{b}} \mathrm{~d} \mathbf{Z}_{t} \stackrel{\Omega^{1}}{=} \frac{1}{2} \mathrm{~d} g\left(u_{t}, u_{t}\right) \mathrm{d} t-\mathrm{d} p_{t} \mathrm{~d} t-\mathrm{d} q_{t} \mathrm{~d} \mathbf{Z}_{t} .
$$

Solution properties of Euler's equations

Theorem ([Crisan et al., 2020a])

Let $m>d / 2+1$. For given $\left\{\xi_{k}\right\}_{k=1}^{K} \in C_{\text {div }}^{m+3}$ and $u_{0} \in W_{\text {div }}^{m, 2}$, there exists a unique local maximal time $T^{*}=T\left(u_{0}, \xi, \mathbf{Z}\right)$ and solution $(u, p) \in C_{T^{*}} W_{\text {div }}^{m, 2} \times C_{T^{*}}^{\alpha} W^{m-3,2}$ of the homogeneous rough Euler system. Moreover, if $T^{*}<\infty$,

$$
\int_{0}^{T^{*}}\left|\omega_{t}\right|_{L^{\infty}} d t=+\infty
$$

where $\omega=\mathbf{d} u^{\mathrm{b}}(\omega=\operatorname{curl} u)$.

Solution properties of Euler's equations

Theorem ([Crisan et al., 2020a])

Let $m>d / 2+1$. For given $\left\{\xi_{k}\right\}_{k=1}^{K} \in C_{\text {div }}^{m+3}$ and $u_{0} \in W_{\text {div }}^{m, 2}$, there exists a unique local maximal time $T^{*}=T\left(u_{0}, \xi, \mathbf{Z}\right)$ and solution $(u, p) \in C_{T^{*}} W_{\text {div }}^{m, 2} \times C_{T^{*}}^{\alpha} W^{m-3,2}$ of the homogeneous rough Euler system. Moreover, if $T^{*}<\infty$,

$$
\int_{0}^{T^{*}}\left|\omega_{t}\right|_{L^{\infty}} d t=+\infty
$$

where $\omega=\mathbf{d} u^{\text {b }}(\omega=\operatorname{curl} u)$.

Corollary

If $d=2$, then for all $p \geq 2$, vorticity is conserved $\left|\omega_{t}\right|_{L^{p}}=\left|\omega_{0}\right|_{L^{p}}$ and hence $T^{*}=\infty$.

- Numerical schemes for rough PDEs

Future outlook

- Numerical schemes for rough PDEs
- Learn ξ for Gaussian rough paths from direct numerical simulation

Future outlook

- Numerical schemes for rough PDEs
- Learn ξ for Gaussian rough paths from direct numerical simulation
- Filtering and data assimilation with rough paths

Future outlook

- Numerical schemes for rough PDEs
- Learn ξ for Gaussian rough paths from direct numerical simulation
- Filtering and data assimilation with rough paths
- Explore usage of computational rough paths, possibly GAN to determine \mathbf{Z}

Future outlook

- Numerical schemes for rough PDEs
- Learn ξ for Gaussian rough paths from direct numerical simulation
- Filtering and data assimilation with rough paths
- Explore usage of computational rough paths, possibly GAN to determine \mathbf{Z}
- Add data directly to varitiational principle

風 Arnold, V. I. (1966).
On the differential geometry of infinite-dimensional lie groups and its application to the hydrodynamics of perfect fluids.
In Vladimir I. Arnold-Collected Works, pages 33-69. Springer.
Crisan, D., Holm, D. D., Leahy, J.-M., and Nilssen, T. (2020a). Solution properties of the rough euler equation. forthcoming.
冨 Crisan, D., Holm, D. D., Leahy, J.-M., and Nilssen, T. (202ob). Variational principles for fluid dynamics on rough paths. arXiv preprint arXiv:2004.07829.
E- Ebin, D. G. and Marsden, J. (1970).
Groups of diffeomorphisms and the motion of an incompressible fluid.
Annals of Mathematics, pages 102-163.

圊 Holm, D. D. (2015).
Variational principles for stochastic fluid dynamics.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2176):20140963.

