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Lagrangian mechanics

◦ Let & be a smooth configuration manifold and ! ∈ �1()&; R).

◦ Define the action functional ( : Ω(@1, @2) → R by

((@) =
∫ 1

0

!(@C , ¤@C)dC,

where Ω(@1, @2) =
{
@ ∈ �2([0, 1];&) : @0 = @1 and @1 = @2

}
.

◦ We say @ ∈ Ω(@1, @2) is a critical point of the action functional if for all
’variations’ of @, that is, �@ = [2·]@ ∈ )@Ω(@1, @2),

d
d&

��
&=0((2&) = d((@) · �@ = 0.

In a local trivilialization chart of )&,

2&(C) = @C + &�@C , with �@ ∈ �2([0, 1];&), �@0 = �@1 = 0.
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Hamilton’s principle
Theorem
A curve @ is a critical point of ( iff in a local trivialization chart of )&

d
dC

[
%!

% ¤@ 8 (@, ¤@)
]
=

%!

%@ 8
(@, ¤@).

These equations are called the Euler-Lagrange equations. They are a system
of second-order ODEs if %!

% ¤@ 9% ¤@ 8 has non-vanishing determinant.

Proof.
Integrating by parts and using that �@0 = �@1 = 0, we find

d( · �@ =
∫ 1

0

(
%!

%@ 8
(@, ¤@)�@ 8 + %!

% ¤@ 8 (@, ¤@) ddC �@
8

)
dC

=

∫ 1

0

(
%!

%@ 8
(@, ¤@) − d

dC

[
%!

% ¤@ 8 (@, ¤@)
] )

�@ 8 dC.

�
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Newtonian and Hamiltonian systems

◦ A Newtonian potential system of # point masses in R3 is equivalent
to the Euler-Lagrange equations with & = R3# , )& = R23# , and

!(q, ¤q) =
#∑
==1

<=
1
2 | ¤q= |

2 −+(q).

Indeed,
d
dC

%!

% ¤q= (q, ¤q) = %!

%q=
(q, ¤q) ⇔ <= ¥q=(C) = −

%+

%q=
(qC)

◦ One passes to Hamiltonian dynamics via the Legendre
transformation to get

¤q = %�

%p
, ¤p = −%�

%q
,

where

�(p, q) = sup
q
(p · ¤q− !(q, ¤q)) =

#∑
==1

1
2<=
| ¤p= |2 ++(q).
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Geodesic equation

◦ Let (", 6) be a Riemannian manifold with volume form �6 .
◦ Define ( : Ω(@1, @2) → R+ by

((@) = �(@) =
∫ 1

0

!( ¤@C)dC =
1
2

∫ 1

0

6@C ( ¤@C , ¤@C)dC.

◦ The Euler-Lagrange equation is the geodesic equation

d2@0

dC2
+ Γ@

12

d@1

dC
d@2

dC = 0,

where Γ is the Christoffel symbol. Alternatively,

∇ ¤@ ¤@ = 0,

where ∇ is the Levi-Civita connection.
◦ Geodesics are not always global minimizers of the energy functional,

but they are local minimizers.
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Lie groups

◦ Let � be a Lie group with identity 4 and Lie algebra g = )4�. For
example, (� = GL(3), g = Mat(3)) or (� = SO(3),g = so(3)).

◦ Assume that the Lagrangian is right-invariant under the group action:

!(6, ¤6) = !(4, ¤66−1) =: ℓ (D), D = ¤66−1 ∈ g.

◦ Let g∗ be denote the dual of g and denote 〈·, ·〉g : g× g∗ → R.
◦ Assume that �ℓ

�D : g→ g∗ is a diffeomorphism, where

d
d&

��
&=0ℓ (D + &�D) = 〈

�ℓ
�D
(D), �D〉g ∀ �D ∈ g.
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Reducing variations to the Lie algebra

Let 6 ∈ Ω(61, 62) and �6 = [2·]6 ∈ )6Ω(61, 62). Set

D = ¤66−1 ∈ �1([0, 1]; g), �F = ¤�66−1 ∈ �1([0, 1]; g),

and
�DC =

d
d&

��
&=0 ¤2&(C)2

−1
& (C) ∈ �1([0, 1]; g).

Lemma
If

d
dC

d
d& 2&(C) =

d
d&

d
dC 2&(C), (1)

then
�DC = ¤�FC − adDC �FC = ¤�FC + [DC , �FC].
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Euler-Poincaré reduction

Theorem
For a curve 6 ∈ Ω(61, 62) with D = ¤66−1 ∈ �1([0, 1]; g), TFAE

◦ 6 satisfies the Euler-Lagrange equations;

◦ 6 is a critical point of ((6) =
∫ 1

0
!(6C , ¤6C)dC;

◦ D satisfies the Euler-Poincaré equations:

d
dC

�ℓ
�D
+ ad∗D

�ℓ
�D

= 0;

◦ (6, D,� = �ℓ
�D (D)) is a critical point of

((6, D,�) =
∫ 1

0

ℓ (DC) + 〈�C , ¤6C 6−1
C − DC〉g;

◦ D is a critical point of ((D) =
∫ 1

0
ℓ (DC)dC with variations of the form

�DC = ¤�F(C) − adDC �F(C).
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[Arnold, 1966] topological hydrodynamics

◦ Let � = DiffB�6 be the group of Sobolev diffeomorphisms, B > 3/2+ 1,
on a Riemannian manifold (", 6)with volume form �6 .

◦ g = )4� = XBdiv is the space of divergence-free vector fields
[Ebin and Marsden, 1970, Theorem 4.2].
◦ We endow DiffB�6 with the right-invariant (weak/not-complete) metric

〈* ,+〉� =
∫
"

6�(<)(*(<),+(<))�6(<) = 〈*�−1,+�−1〉g,

where the right-hand-side is the !2-inner product on vector fields

〈D, E〉g =
∫
"

6<(D(<), E(<))�6(<).

◦ [Ebin and Marsden, 1970] showed there exists a smooth Levi-Civita
connection ∇̄ = %∇ (where % : XB → XBdiv) and geodesic spray:

Euler-Lagrange
%∇ ¤� ¤� = 0

D= ¤��−1

⇔
Euler-Poincare

%CD + ∇DD = −∇?.
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Parametrization through Euler-Poincare [Holm, 2015]

◦ Assume a decomposition of the form

¤6C = DC 6C +
 ∑
:=1

�: 6C ¤I:C ,

where D models coarse-scales and
∑
: �: ¤I: models fast-scales.

◦ Require that (6, D,� = �ℓ
�D (D)) is a critical point of

((6, D,�) =
∫ )

0
ℓ (DC) + 〈�C , ¤6C 6−1

C − DC −
 ∑
:=1

�: ¤I:C 〉g

to derive an equation for D.
◦ Preserves geometric structure for momentum �ℓ

�D .
◦ Equivalently, D satisfies the Euler-Poincaré equations:

d
dC

[
�ℓ
�D

]
+ ad∗D

�ℓ
�D
+

 ∑
:=1

(
ad∗�:

�ℓ
�D

)
¤I:C = 0.
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Stochastic advection by Lie transport [Holm, 2015]

Letting � = DiffB�(T3), g = XBdiv(T
3), and

ℓ (D) =
∫

T3

|D(G)|2�(G)

with I:C = �
:
C , 1 ≤ : ≤  , independent Brownian motions, we find

dD 8 + D 9%G 9D 8dC +
 ∑
:=1

(
� 9%G 9D

9 + D 9%G 8� 9
)
◦ d�:C = −%G 8d?.

in the standard coordinate system with 68 9 = �8 9 .

If we denote by D♭ the one-form associated with D, we find

dD♭ + £DD♭dC + £�D♭ ◦ d�C = −dd?,

and hence the vorticity two-form $ = dD♭ satisfies

d$ + £D$dC + £�$ ◦ d�C = 0.
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Geometric rough paths
Definition
For a given  ∈

( 1
3 , 1

2
]
, we say

Z = (I, Z) ∈ �
) (R

 ) × �2
2,)(R

 × )

is R -valued -Hölder geometric rough path if there exists

Z(#) =
(
I
(#)
C , Z

(#)
BC :=

∫ C

B

∫ A

B

dI(#)A2 ⊗ dI
(#)
A

)
∈ �1

)(R
 ) × �1

2,)(R
 × )

such that lim
#→∞

sup
0≤B<C≤)

|�IBC − �I(#)BC |
|C − B | + sup

0≤B<C≤)

|ZBC −Z
(#)
BC |

|C − B |2 = 0.

We denote by C
6,)(R ) the space of geometric rough paths.

Examples include Stratonovich Brownian motion, fractional
Brownian motion, and Gaussian processes with sufficient
time-correlation decay on a set of full probabilty measure.
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Controlled rough paths and the rough integral

Definition
For a given Fréchet space � and Z ∈ C

6,)(R ), we let D/,)(�)
denote the space of Y = (.,.′) ∈ �

)
(�) × �

)
(� ) such

?(�.BC −.′B �/BC) = $(|C − B |2),

for every seminorm ? of �, endowed with the obvious topology.

Theorem (Young/Sewing)
There exists a (unique) continuous linear map IZ : D/,)(� ) → D/,)(�)
such that IZ(Y) = (

∫ ·
0 Y3Z,.) where

∫ 0
0 Y3Z = 0� and

?

(∫ C

B

YA dZA −.B�/BC −.′BZBC

)
= $(|C − B |3).
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Truly rough path

Definition
Let us call a path Z ∈ C

6,)(R ) truly rough if for all B ∈ [0,)] and C
in a dense set

lim sup
C↓B

|�/BC |
|C − B |2 = ∞.

Lemma
A decomposition of a path - ∈ �

)
(�) of the form

-C = -0 +
∫ C

0
�BdB +

∫ C

0
�BdZB

is unique.

*
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Manifolds and the tensor bundles

◦ Let " be a compact boundaryless 3-dimensional real manifold.

◦ Let X denote the space of smooth vector fields
◦ Let Ω: denote the space of smooth alternating :-forms
◦ Let TA

B denote the space of smooth A-contravariant and B-covariant
tensors.
◦ For a given ) ∈ Diff and � ∈ TA

B , let )∗� denote the pullback and
)∗� = ()−1)∗� denote the pushforward.
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Lie derivative

The Lie derivative of � ∈ TA
B along D ∈ �)(X) is defined by

d
dA |A=C)

∗
AC� = £DC�, where ¤)CB = DC()CB), )BB = id .

For 5 ∈ Ω0, D, E ∈ X,  ∈ Ω1, and non-vanishing � ∈ Ω3

£D 5 = d 5 (D) = D 8C%G 8 5 , £DE = [D, E] = (D 9%G 9E 8 − E 9%G 9D 8)%G 8 ,

£D = (D 9%G 98 +  9%G 8D 9)3G 8 , £D� = (div� D)�.
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Rough flow on "

Theorem
There exists a continuous map

Flow : �
) (X) × �

∞
) (X

 ) × C6,)(R ) → �
2,)(Diff)

such that � = Flow(D, �, Z) satisfies
◦

�CB = �C� ◦ ��B , ∀(C, B) ∈ [0,)]2;

◦ for all (B,<) ∈ [0,)] ×", �·B(<) ∈ �([B,)];") is the unique solution of

d�CB(<) = DC(�CB(<))dC + �C(�CB(<))3ZC , )BB(<) = < ∈ ";

that is, for all smooth 5 : " → R,

⇔ �∗CB 5 (<) = 5 (<) +
∫ C

B

�∗AB£DA 5 (<)3A +
∫ C

B

�∗AB£�A 5 (<)3ZA .
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The Lie chain rule

Lemma

◦ Let � ∈ �)(TA
B ), 2 = (�, �′) ∈ DZ,)((TA

B ) ), and

�C = �0 +
∫ C

0
�B dB +

∫ C

0
�B dZB , C ∈ [0,)].

Then

�∗CB�C = �B +
∫ C

B

�∗AB
(
�A + £DA�A

)
dA +

∫ C

0
�∗AB (�A + £�A�A) 3ZA .

◦ For a given �0 ∈ TA
B , �C = �C0∗�0 satisfies

�C +
∫ C

0
£DB�B dB +

∫ C

0
£�B�B dZB = �0.
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Momentum and the coadjoint operator

◦ Recall that if � = Diff, then g = X. We want a canonical
characterization of g∗, where ‘momentum’ �ℓ/��will lie.

◦ Let X∨ = Ω1 ⊗Ω3 and 〈·, ·〉X : X∨ × X→ R be defined by

〈 ⊗ �, D〉X =
∫
"

(D)�,  ⊗ � ∈ X∨, D ∈ X;

◦ Noting that adD E = −[D, E] = −£DE, for all  ⊗ � ∈ X∨ and D ∈ X, we
find

〈 ⊗ �, adD E〉X = 〈£D( ⊗ �), E〉,
and hence the co-adjoint operator is

ad∗D = £D .

◦ In the incompressible setting on a Riemannian manifold (", 6), we
define the dual of the �6-divergence-free vector fields X�6 to be

X∨�6 = X
∨/dΩ0 ⊗ �6 .

19 / 31



Momentum and the coadjoint operator

◦ Recall that if � = Diff, then g = X. We want a canonical
characterization of g∗, where ‘momentum’ �ℓ/��will lie.
◦ Let X∨ = Ω1 ⊗Ω3 and 〈·, ·〉X : X∨ × X→ R be defined by

〈 ⊗ �, D〉X =
∫
"

(D)�,  ⊗ � ∈ X∨, D ∈ X;

◦ Noting that adD E = −[D, E] = −£DE, for all  ⊗ � ∈ X∨ and D ∈ X, we
find

〈 ⊗ �, adD E〉X = 〈£D( ⊗ �), E〉,
and hence the co-adjoint operator is

ad∗D = £D .

◦ In the incompressible setting on a Riemannian manifold (", 6), we
define the dual of the �6-divergence-free vector fields X�6 to be

X∨�6 = X
∨/dΩ0 ⊗ �6 .

19 / 31



Momentum and the coadjoint operator

◦ Recall that if � = Diff, then g = X. We want a canonical
characterization of g∗, where ‘momentum’ �ℓ/��will lie.
◦ Let X∨ = Ω1 ⊗Ω3 and 〈·, ·〉X : X∨ × X→ R be defined by

〈 ⊗ �, D〉X =
∫
"

(D)�,  ⊗ � ∈ X∨, D ∈ X;

◦ Noting that adD E = −[D, E] = −£DE, for all  ⊗ � ∈ X∨ and D ∈ X, we
find

〈 ⊗ �, adD E〉X = 〈£D( ⊗ �), E〉,
and hence the co-adjoint operator is

ad∗D = £D .

◦ In the incompressible setting on a Riemannian manifold (", 6), we
define the dual of the �6-divergence-free vector fields X�6 to be

X∨�6 = X
∨/dΩ0 ⊗ �6 .

19 / 31



Momentum and the coadjoint operator

◦ Recall that if � = Diff, then g = X. We want a canonical
characterization of g∗, where ‘momentum’ �ℓ/��will lie.
◦ Let X∨ = Ω1 ⊗Ω3 and 〈·, ·〉X : X∨ × X→ R be defined by

〈 ⊗ �, D〉X =
∫
"

(D)�,  ⊗ � ∈ X∨, D ∈ X;

◦ Noting that adD E = −[D, E] = −£DE, for all  ⊗ � ∈ X∨ and D ∈ X, we
find

〈 ⊗ �, adD E〉X = 〈£D( ⊗ �), E〉,
and hence the co-adjoint operator is

ad∗D = £D .

◦ In the incompressible setting on a Riemannian manifold (", 6), we
define the dual of the �6-divergence-free vector fields X�6 to be

X∨�6 = X
∨/dΩ0 ⊗ �6 .

19 / 31



Advected variables and the diamond operator

◦ Let A be a direct summand of tensors field bundles and A∨ denote the
canonical dual. Denote the duality pairing by 〈·, ·〉A : A∨ ×A→ R.

◦ Paths in Awill model variables like temperature, density, or buoyancy.
◦ Define � : A∨ ×A→ X∨ by

〈1, £D0〉A = −〈1 � 0, D〉X ∀0 ∈ A, 1 ∈ A∨, D ∈ X
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The Lagrangian

◦ Let ℓ : X×A→ R. Assume that �ℓ
�D : X×A→ X∨ and �ℓ

�0 : X×A→ A∨

are continuous:

d
d&

��
&=0ℓ (D + &�D, 0 + &�0) = 〈 �ℓ

�D
(D, 0), �D〉X + 〈

�ℓ
�0
(D, 0), �0〉A

◦ Assume that �ℓ
�D (·, 0) : X→ X∨ is an isomorphism for all 0 ∈ A.

◦ Density � = ��6 ∈ A = Ω3 is an advected variable. Let

ℓ (D,�) = 1
2

∫
"

�6(D, D)�6 =
1
2

∫
"

�D♭(D)�6 =
1
2 〈D

♭ ⊗ ��6 , D〉X.

Then
�ℓ
�D

= D♭ ⊗ ��6 ∈ X∨, �ℓ
��

=
1
2 6(D, D) ∈ A∨ = Ω0.
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Hamilton-Pontryagin (HP) variational principle: flows

◦ Let Z ∈ C6,)(R ) be truly rough and

DiffZ = Flow(�
) (X),�

∞
) (X

 ), Z)·0.

◦ A given � = Flow(E, �, Z) ∈ DiffZ satisfies

3�C = EC(�C)dC + �C(�C)dZC , �0 = id .

◦ For given � ∈ D/,)(X∨), define∫ )

0
〈�C ,d�C�−1

C 〉X :=
∫ )

0
〈�C , EC〉X dC +

∫ )

0
〈�C , �C〉X dZC .
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HP variational principle: functional and constraints

◦ Define the action functional (HPZ : DiffZ ×�
)
(X) ×D/,)(X∨) → R by

(HPZ(�, D,�) =
∫ )

0
ℓ (DC ,�C∗00)dt+ 〈�C , 3�C�−1

C − DCdt− �dZC〉X.

◦ The Lagrange constraint imposes

d�C = DC(�C)dC + �(�C)dZC

and hence by the Lie chain rule

d0C + £DC 0CdC + £�0CdZC = 0.

◦ The Clebsch variational principle, which I am not presenting, directly
imposes the advection relation. We can avoid the assumption of truly
roughness in this case due to the fundamental theorem of rough
calculus of variations.
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HP variational principle: variations

◦ For a given �F ∈ �∞
)
(X)with �F0 = �F) = 0, define

# : (−1, 1) ∈ [0,)] → Diff by

¤#&
C (<) = & ¤�FC(#&

C (<)), #&
0(<) = <.

and �&C = #&
C ◦ �C and it can be shown that

3�&C =
(
¤�FC + adEC �FC

)
dt+ ad�C �FCdZC .

◦ We take variations of D and � of the form D& = D + &�D and
�& = � + &�� with

�D0 = �D) = 0 and ��0 = ��) = 0.
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HP variational principle

Theorem ([Crisan et al., 2020b])
A curve (�, D,�) is a critical point of (HPZ iff for all [0,)],

d�C = DC(�C)dC + �(�C)dZC , C ∈ (0,)], �0 = id,

< =
�ℓ
�D
(D, 0) = �,

<C +
∫ C

0
£DB<BdB +

∫ C

0
£�<BdZB

X∨
= <0 +

∫ C

0

�ℓ
�0
(DB , 0B) � 0BdB,

0C +
∫ C

0
£DB 0BdB +

∫ C

0
£�0BdZB

A
= 00, 0C = �C∗00.

25 / 31



A Kelvin circulation theorem

Recall that density � ∈ �
)
(Ω3) is an advected variable:

d� + £D�dC + £��dZC = 0 ⇔ �C = �C∗�0.

Moreover, �ℓ
�D , �ℓ

�0 ∈ Ω1 ⊗Ω3, so that 1
�

�ℓ
�D , 1

�
�ℓ
�0 ∈ Ω1 are one-forms.

Theorem
Let Γ denote a compactly embedded one-dimensional smooth submanifold of
". If �0 is non-vanishing, then∫

�CΓ

1
�C

�ℓ
�D
(DC , 0C) =

∫
Γ

1
�0

�ℓ
�D
(D0, 00) +

∫ C

0

∫
�BΓ

1
�B

�ℓ
�0
(DB , 0B) � 0BdB.

26 / 31



Incompressible Euler

Define the Lagrangian ℓ : X�6 ×A→ R by

ℓ (D,� = ��6) =
1
2

∫
"

�6(D, D)�6 .

Applying 1
��6

to the momentum equation (i.e., �ℓ
�D ) we get

dD♭C + £DCD♭C dC + £�D♭C dZC
Ω1
=

1
2d6(DC , DC)dC −

1
�C

d?CdC −
1
�C

d@CdZC ,

d∗D♭ = 0 = div D,

d�C + £DC�CdC + £��CdZC
Ω0
= 0.

In the special case � ≡ 1 (homogeneous fluid), we find

dDC + £DCD♭C dC + £�D♭C dZC
Ω1
=

1
2d6(DC , DC)dC − d?CdC − d@CdZC .
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Solution properties of Euler’s equations

Theorem ([Crisan et al., 2020a])
Let < > 3/2+ 1. For given {�:} :=1 ∈ �

<+3
div and D0 ∈,<,2

div , there exists a
unique local maximal time )∗ = )(D0, �, Z) and solution
(D, ?) ∈ �)∗,<,2

div × �

)∗,

<−3,2 of the homogeneous rough Euler system.
Moreover, if )∗ < ∞, ∫ )∗

0
|$C |!∞3C = +∞,

where $ = dD♭ ($ = curl D).

Corollary
If 3 = 2, then for all ? ≥ 2, vorticity is conserved |$C |!? = |$0 |!? and
hence )∗ = ∞.
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Future outlook

◦ Numerical schemes for rough PDEs

◦ Learn � for Gaussian rough paths from direct numerical simulation
◦ Filtering and data assimilation with rough paths
◦ Explore usage of computational rough paths, possibly GAN to

determine Z
◦ Add data directly to varitiational principle
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