Chris Oates

 

Slides        Video

Abstract

The use of heuristics to assess the convergence and compress the output of Markov chain Monte Carlo can be sub-optimal in terms of the empirical approximations that are produced. Here we consider the problem of retrospectively selecting a subset of states, of fixed cardinality, from the sample path such that the approximation provided by their empirical distribution is close to optimal. A novel method is proposed, based on greedy minimisation of a kernel Stein discrepancy, that is suitable for problems where heavy compression is required. Theoretical results guarantee consistency of the method and its effectiveness is demonstrated in the challenging context of parameter inference for ordinary differential equations. Software is available in the Stein Thinning package in Python, R and MATLAB.

Our speaker

Chris Oates is a Professor of Statistics at Newcastle University and a Turing Fellow / Group Leader on the Programme for Data-Centric Engineering at the Alan Turing Institute, UK.